【題目】二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,下列結(jié)論a0; =1;b24ac0;當(dāng)x1時(shí),yx的增大而減小;當(dāng)﹣1x3時(shí)y0,其中正確的是_____.(只填序號(hào))

【答案】②⑤

【解析】圖像開口向上,所以a0,所以①說法錯(cuò)誤;拋物線與x軸的交點(diǎn)坐標(biāo)分別是(-1,0)和(30),所以對(duì)稱軸-==1,所以②說法正確;根據(jù)圖像可得,二次函數(shù)y=ax2+bx+ca≠0)與x軸有兩個(gè)交點(diǎn),所以一元二次方程ax2+bx+c=0a≠0)有兩個(gè)不相等的實(shí)數(shù)根,所以b24ac0,所以③說法錯(cuò)誤;當(dāng)x2時(shí),y隨著x的增大而增大,所以④說法錯(cuò)誤;通過圖像不難得出當(dāng)﹣1x3時(shí),y0,所以⑤說法正確.正確的說法有②⑤.

故答案為②⑤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】構(gòu)造圖形解題,它的應(yīng)用十分廣泛,特別是有些技巧性很強(qiáng)的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無措,難以下手,這時(shí),如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過構(gòu)造適合的幾何圖形,將會(huì)得到事半功倍的效果,下面介紹兩則實(shí)例:

實(shí)例一:1876年,美國(guó)總統(tǒng)伽非爾德利用實(shí)例一圖證明了勾股定理:由

S四邊形ABCD=SABC+SADE+SABE,化簡(jiǎn)得:

實(shí)例二:歐幾里得的《幾何原本》記載,關(guān)于x的方程的圖解法是:

RtABC,使∠ABC=90°BC=,AC=,再在斜邊AB上截取BD,則AD的長(zhǎng)就是該方程的一個(gè)正根(如實(shí)例二圖)

請(qǐng)根據(jù)以上閱讀材料回答下面的問題:

(1)如圖1,請(qǐng)利用圖形中面積的等量關(guān)系,寫出甲圖要證明的數(shù)學(xué)公式是 ,乙圖要證明的數(shù)學(xué)公式是

(2)如圖2,若2-8是關(guān)于x的方程x2+6x16的兩個(gè)根,按照實(shí)例二的方式構(gòu)造RtABC,連接CD,求CD的長(zhǎng);

(3)x,y,z都為正數(shù),且x2+y2z2,請(qǐng)用構(gòu)造圖形的方法求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在面積為3ABC中,AB=3,∠BAC=45°,點(diǎn)DBC邊上一點(diǎn).

1)若ADBC邊上的中線,求AD的長(zhǎng);

2)點(diǎn)D關(guān)于直線ABAC的對(duì)稱點(diǎn)分別為點(diǎn)M、N,求AN的長(zhǎng)度的最小值;

3)若PABC內(nèi)的一點(diǎn),求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年泉州市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為158160,154158,170則由這組數(shù)據(jù)得到的結(jié)論錯(cuò)誤的是( 。

A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角三角形ABC內(nèi)接于⊙O,ADBC垂足為D

1)如圖1, ,BDDC,求∠B的度數(shù);

2)如圖2BEAC,垂足為EBEAD于點(diǎn)F,過點(diǎn)BBGAD交⊙O于點(diǎn)G,AB邊上取一點(diǎn)H,使得AHBG.求證AFH是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x+4,

1)用配方法確定它的頂點(diǎn)坐標(biāo)、對(duì)稱軸;

2x取何值時(shí),yx增大而減?

3x取何值時(shí),拋物線在x軸上方?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中,錯(cuò)誤結(jié)論有( );①三角形三條高(或高的延長(zhǎng)線)的交點(diǎn)不在三角形的內(nèi)部,就在三角形的外部;②一個(gè)多邊形的邊數(shù)每增加一條,這個(gè)多邊形的內(nèi)角和就增加360;③兩條平行直線被第三條直線所截,同旁內(nèi)角的角平分線互相平行;④三角形的一個(gè)外角等于任意兩個(gè)內(nèi)角的和;⑤在中,若,則為直角三角形;⑥順次延長(zhǎng)三角形的三邊,所得的三角形三個(gè)外角中銳角最多有一個(gè)

A. 6個(gè)B. 5個(gè)C. 4個(gè)D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等腰三角形,頂角BAC=<600,D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AE,過點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE、BE、DF

(1)求證:BE=CD

(2)若ADBC,試判斷四邊形BDFE的形狀,并給出證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)是(a0),點(diǎn)B的坐標(biāo)是(b0),其中ab滿足.

(1)填空:a=______b=_______;

(2)軸負(fù)半軸上有一點(diǎn)M(0,m),三角形ABM的面積為4.

①求m的值;

②將線段AM沿x軸正方向平移,使得A的對(duì)應(yīng)點(diǎn)為BM的對(duì)應(yīng)點(diǎn)為N. 若點(diǎn)P為線段AB上的任意一點(diǎn)(不與A,B重合),試寫出∠MPN,∠PMA,∠PNB之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案