【題目】有理數(shù)數(shù)ab在軸上的表示如圖所示,則下列結(jié)論中:①ab0,②a+b0,③ab0,④a,⑤﹣a>﹣b,正確的有(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

【答案】B

【解析】

根據(jù)ab在數(shù)軸上的位置就可得到a,b的符號,以及絕對值的大小,再根據(jù)有理數(shù)的運(yùn)算法則對各項(xiàng)進(jìn)行判斷.

解:由a,b在數(shù)軸上的位置可知a0,b0,-b>0,且|b||a|,

根據(jù)兩數(shù)相乘異號得負(fù),可判斷ab0,故①正確;

根據(jù)異號兩數(shù)相加取絕對值較大的加數(shù)的符號,故取b的符號,a+b0,故②正確;

根據(jù)減去一個(gè)數(shù)等于加上它的相反數(shù),可得ab=a+(-b),再根據(jù)同號兩數(shù)相加取相同符號,可判斷ab=a+(-b)>0錯(cuò)誤;

a=|a|,故正確;

因?yàn)?/span>a為正數(shù),則-a為負(fù)數(shù),b為負(fù)數(shù),則-b為正數(shù),所以-a-b,故⑤錯(cuò)誤;

故有三個(gè)正確,選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果∠α和∠β互補(bǔ),且∠α<∠β,則下列表示∠α的余角的式子中:①90°﹣∠α;②∠β90°;③(∠α+β);④(∠β﹣∠α)其中正確的有(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的菱形ABCD中,∠A=60,點(diǎn)M是邊AB上一點(diǎn),點(diǎn)N是邊BC上一點(diǎn),且∠ADM=15,∠MDN=90,則點(diǎn)BDN的距離為( )

A. B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展,小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費(fèi);超過1千克,超過的部分按每千克15元收費(fèi),乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元,設(shè)小明快遞物品x千克.

(1)根據(jù)題意,填寫下表:

快遞物品重量(千克)

0.5

1

3

4

甲公司收費(fèi)(元)

22

乙公司收費(fèi)(元)

11

51

67

(2)設(shè)甲快遞公司收費(fèi)y1元,乙快遞公司收費(fèi)y2元,分別寫出y1,y2關(guān)于x的函數(shù)關(guān)系式;

(3)當(dāng)x>3時(shí),小明應(yīng)選擇哪家快遞公司更省錢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x+6x2的解互為倒數(shù),

1)求m的值.

2)若當(dāng)ym時(shí),代數(shù)式ay3+by+1的值為5,求當(dāng)y=﹣m時(shí),代數(shù)式ay3+by+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、C、F在坐標(biāo)軸上,EOA的中點(diǎn),四邊形AOCB是矩形,四邊形BDEF是正方形,若點(diǎn)C的坐標(biāo)為(3,0),則點(diǎn)D的坐標(biāo)為(  )

A. 1,2.5B. 1,1+ C. 13D. 1,1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD對角線交于點(diǎn)O,AECDE,AE=OD,則∠CAE=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線ACBD相交于點(diǎn)O,不能判斷四邊形ABCD是平行四邊形的是( 。

A. ABDC,AD=BC B. ABDC,ADBC C. AB=DC,AD=BC D. OA=OC,OB=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CE=2DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF,下列結(jié)論:①△ABG≌△AFG;BG=GC;③∠EAG=45°;AGCF;SECG:SAEG=2:5,其中正確結(jié)論的個(gè)數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步練習(xí)冊答案