分析 由矩形的性質(zhì)結(jié)合條件可證明△ABE∽△DAE,可求得AE,再利用勾股定理可分別求得AB、AD.
解答 解:∵四邊形ABCD為矩形,
∴∠BAD=90°,
∵AE⊥BD,
∴∠AEB=∠AED=90°,
∴∠ABE+∠BAE=∠BAE+∠DAE,
∴∠ABE=∠DAE,
∴△ABE∽△DAE,
∴$\frac{BE}{AE}$=$\frac{AE}{DE}$,即$\frac{2}{AE}$=$\frac{AE}{6}$,解得AE2=12,
在Rt△ABE中,由勾股定理可得AB=$\sqrt{A{E}^{2}+B{E}^{2}}$=4,
在Rt△ADE中,由勾股定理可得AD=$\sqrt{A{E}^{2}+D{E}^{2}}$=4$\sqrt{3}$,
即矩形ABCD的長(zhǎng)和寬分別為4和4$\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查矩形的性質(zhì)和相似三角形的判定和性質(zhì),利用相似三角形的性質(zhì)求得AE的長(zhǎng)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a=6,b=8,c=10 | B. | a=5k,b=12k,c=13k | ||
C. | a=5,b=7,c=8 | D. | a=$\sqrt{7}$,b=$\sqrt{3}$,c=2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com