5.某超市準(zhǔn)備購(gòu)進(jìn)A、B兩種品牌臺(tái)燈,其中A品牌臺(tái)燈每盞進(jìn)價(jià)比B品牌臺(tái)燈每盞進(jìn)價(jià)貴30元,A品牌臺(tái)燈每盞售價(jià)120元,B品牌臺(tái)燈每盞售價(jià)80元.已知,用1040元購(gòu)進(jìn)的A品牌臺(tái)燈的數(shù)量與用650元購(gòu)進(jìn)的B品牌臺(tái)燈數(shù)量相同.
(1)求A、B兩種品牌臺(tái)燈的進(jìn)價(jià)分別是多少元?
(2)該超市打算購(gòu)進(jìn)A、B兩種品牌臺(tái)燈共100盞,同時(shí)要求A、B兩種品牌臺(tái)燈的總利潤(rùn)不得少于3400元,不得多于3550元,問(wèn)該超市有幾種進(jìn)貨方案?
(3)在(2)的所有進(jìn)貨方案中,該超市決定對(duì)A品牌臺(tái)燈進(jìn)行降價(jià)促銷,A品牌臺(tái)燈每盞降價(jià)m(8?m?15)元,B品牌臺(tái)燈售價(jià)不變,那么該超市如何進(jìn)貨才能獲得最大利潤(rùn)?

分析 (1)根據(jù):“1040元購(gòu)進(jìn)的A品牌臺(tái)燈的數(shù)量=650元購(gòu)進(jìn)的B品牌臺(tái)燈數(shù)量”相等關(guān)系,列方程求解可得;
(2)根據(jù):“3400≤A、B品牌臺(tái)燈的總利潤(rùn)≤3550”不等關(guān)系,列不等式組,可知數(shù)量范圍,確定方案數(shù);
(3)利用:總利潤(rùn)=A品牌臺(tái)燈利潤(rùn)+B品牌臺(tái)燈利潤(rùn),列出函數(shù)關(guān)系式,結(jié)合函數(shù)增減性,分類討論即可.

解答 解:(1)設(shè)A品牌臺(tái)燈進(jìn)價(jià)為x元/盞,則B品牌臺(tái)燈進(jìn)價(jià)為(x-30)元/盞,根據(jù)題意得
$\frac{1040}{x}=\frac{650}{x-30}$,解得x=80,
經(jīng)檢驗(yàn)x=80是原分式方程的解.
則A品牌臺(tái)燈進(jìn)價(jià)為80元/盞,
B品牌臺(tái)燈進(jìn)價(jià)為x-30=80-30=50(元/盞),
答:A、B兩種品牌臺(tái)燈的進(jìn)價(jià)分別是80元/盞,50元/盞.
(2)設(shè)超市購(gòu)進(jìn)A品牌臺(tái)燈a盞,則購(gòu)進(jìn)B品牌臺(tái)燈有(100-a)盞,根據(jù)題意,有
$\left\{\begin{array}{l}{(120-80)a+(80-50)(100-a)≥3400}\\{(120-80)a+(80-50)(100-a)≤3550}\end{array}\right.$
解得,40≤a≤55.
∵a為整數(shù),
∴該超市有16種進(jìn)貨方案.
(3)令超市銷售臺(tái)燈所獲總利潤(rùn)記作w,根據(jù)題意,有
w=(120-m-80)a+(80-50)(100-a)
=(10-m)a+3000
∵8?m?15
∴①當(dāng)8<m<10時(shí),即10-m<0,w隨a的增大而減小,
故當(dāng)a=40時(shí),所獲總利潤(rùn)w最大,
即A品牌臺(tái)燈40盞、B品牌臺(tái)燈60盞;
②當(dāng)m=10時(shí),w=3000;
故當(dāng)A品牌臺(tái)燈數(shù)量在40至55間,利潤(rùn)均為3000;
③當(dāng)10<m<15時(shí),即10-m>0,w隨a的增大而增大,
故當(dāng)a=55時(shí),所獲總利潤(rùn)w最大,
即A品牌臺(tái)燈55盞、B品牌臺(tái)燈45盞;

點(diǎn)評(píng) 本題考查了列分式方程解實(shí)際問(wèn)題的運(yùn)用,不等式組的運(yùn)用及一次函數(shù)的性質(zhì)的運(yùn)用,解答時(shí)求出一次函數(shù)的解析式并討論是關(guān)鍵,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如果x<0<y,那么($\frac{|x|}{x}$)2+($\frac{|y|}{y}$)2+$\frac{|xy|}{xy}$的值是1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知:如圖△ABC中,BM、CN是∠ABC、∠ACB的平分線,且AM⊥BM于M,AN⊥CN于N,求證:MN∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,一次函數(shù)y=-2x+5與反比例函數(shù)y=$\frac{k}{x}$的圖象,相交于A(a,3),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B坐標(biāo).
(2)若點(diǎn)P(-1,0),求△PAB的面積.
(3)結(jié)合圖象,直接寫出當(dāng)0<$\frac{k}{x}$<-2x+5時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知反比例函數(shù)y=$\frac{2}{x}$的圖象與正比例函數(shù)y=kx的圖象交于點(diǎn)A(m,-2),
(1)求正比例函數(shù)的解析式及兩函數(shù)圖象另一個(gè)交點(diǎn)B的坐標(biāo);
(2)試根據(jù)圖象寫出不等式$\frac{2}{x}$≥kx的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第7個(gè)圖形需要黑色棋子的個(gè)數(shù)是( 。
A.48B.64C.63D.80

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.不改變分式$\frac{1-{x}^{2}y-x}{-5{x}^{3}-2y+3}$的值,使分子、分母的最高次項(xiàng)的系數(shù)都為正,正確的變形是( 。
A.$\frac{1+{x}^{2}y-x}{5{x}^{3}-2y+3}$B.$\frac{{x}^{2}y-x-1}{5{x}^{3}-2y-3}$
C.$\frac{{x}^{2}y+x-1}{5{x}^{3}+2y-3}$D.$\frac{{x}^{2}y+x+1}{5{x}^{3}+2y-3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.使分式$\frac{3}{x-3}$有意義的x的取值范圍是(  )
A.x≤3B.x≥3C.x≠3D.x=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列采用的調(diào)查方式中,不合適的是( 。
A.為了了解全國(guó)中學(xué)生的身高狀況,采用抽樣調(diào)查的方式
B.對(duì)某型號(hào)的電了產(chǎn)品的使用壽命采用抽樣調(diào)查的方式
C.某大型企業(yè)對(duì)所生產(chǎn)的產(chǎn)品的合格率采用全面調(diào)查的方式
D.為了了解人們保護(hù)水資源的意識(shí),采用抽樣調(diào)查的方式

查看答案和解析>>

同步練習(xí)冊(cè)答案