【題目】定義:如圖,把經(jīng)過(guò)拋物線 (, ,為常數(shù))軸的交點(diǎn)和頂點(diǎn)的直線稱為拋物線的“伴線”,若拋物線與軸交于,兩點(diǎn)(的右側(cè)),經(jīng)過(guò)點(diǎn)和點(diǎn)的直線稱為拋物線的“標(biāo)線”.

(1)已知拋物線,求伴線的解析式.

(2)若伴線為,標(biāo)線為

①求拋物線的解析式;

②設(shè)為“標(biāo)線”上一動(dòng)點(diǎn),過(guò)平行于“伴線”,交“標(biāo)線”上方的拋物線于,求線段長(zhǎng)的最大值.

【答案】(1);(2)①;②時(shí),有最大值

【解析】

1)先根據(jù)拋物線解析式及其圖象求出A、B、C、M的坐標(biāo),再根據(jù)“伴線”是過(guò)拋物線 (,, 為常數(shù))軸的交點(diǎn)和頂點(diǎn)的直線,可設(shè)“伴線”為,再把點(diǎn)C、M代入即可求解;

2)①根據(jù)“伴線”解析式求出點(diǎn)C坐標(biāo),進(jìn)而求出“標(biāo)線”解析式和點(diǎn)B坐標(biāo),將點(diǎn)B、C代入拋物線解析式可得原拋物線的頂點(diǎn)式:,繼而得拋物線的頂點(diǎn)坐標(biāo),再將拋物線頂點(diǎn)坐標(biāo)代入伴線解析式,解方程求得a的值,繼而求得拋物線解析式;

②設(shè)點(diǎn),根據(jù)平行于伴線,可設(shè)的直線解析式為,與拋物線聯(lián)立可得Q點(diǎn)坐標(biāo),根據(jù)兩點(diǎn)間距離公式可得PQ的長(zhǎng)度為關(guān)于m的二次函數(shù),根據(jù)二次函數(shù)的性質(zhì)求出最大值即為PQ的最大值.

(1)

,則,解得:,

,,

,則,

代入拋物線解析式可得

∴頂點(diǎn),

設(shè)伴線為,把點(diǎn),代入得:

解得:

∴伴線的解析式為:

(2)①伴線為,

x0,則y=﹣3,

∵標(biāo)線為,則,

,

∴標(biāo)線解析式為:,

y0,則x3,

,

將點(diǎn),代入,

,,

,

∴拋物線頂點(diǎn),

∴將點(diǎn)M代入伴線,得:,

整理得:,

解得:(當(dāng)時(shí),,故舍去),

∴拋物線解析式為:

②設(shè)點(diǎn),

平行于伴線,

的直線解析式為,

與拋物線的交點(diǎn)

,

,

,

∴當(dāng),即時(shí),有最大值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,C=90°,ABC的平分線交AC于點(diǎn)E,過(guò)點(diǎn)EBE的垂線交AB于點(diǎn)F,OBEF的外接圓.

1)求證:ACO的切線;

2)過(guò)點(diǎn)EEHAB,垂足為H,求證:CD=HF;

3)若CD=1,EH=3,求BFAF長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年某省實(shí)施人才引進(jìn)政策,對(duì)引進(jìn)人才給予資金扶持和落戶優(yōu)惠,海內(nèi)外英才紛紛向組織部門遞交報(bào)名表.為了了解報(bào)名人員年齡結(jié)構(gòu)情況,抽樣調(diào)查了50名報(bào)名人員的年齡(單位:歲),將抽樣得到的數(shù)據(jù)分成5組,統(tǒng)計(jì)如下表:

分組

頻數(shù)(人數(shù))

頻率

30歲以下

0.16

大于30歲不大于40

20

0.40

大于40歲不大于50

14

大于50歲不大于60

6

0.12

60歲以上

1)請(qǐng)將表格中空格填寫完整;

2)樣本數(shù)據(jù)的中位數(shù)落在_____,若把樣本數(shù)據(jù)制成扇形統(tǒng)計(jì)圖,則“大于30歲不大于40歲”的圓心角為______度;

3)如果共有2000人報(bào)名,請(qǐng)你根據(jù)上面數(shù)據(jù),估計(jì)年齡不大于40歲的報(bào)名人員會(huì)有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“機(jī)動(dòng)車行駛到斑馬線要禮讓行人”等交通法規(guī)實(shí)施后,某校共有3000人,數(shù)學(xué)課外實(shí)踐小組就對(duì)這些交通法規(guī)的了解情況在全校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實(shí)踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:

1)扇形統(tǒng)計(jì)圖中C所對(duì)應(yīng)的扇形圓心角度數(shù)為   ;估計(jì)全校非常了解交通法規(guī)的有   人.

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)學(xué)校準(zhǔn)備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機(jī)抽取兩名學(xué)生參加市區(qū)交通法規(guī)競(jìng)賽,請(qǐng)用列表或畫樹(shù)狀圖的方法求丙和丁兩名同學(xué)同事被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的半徑為1,的直徑,過(guò)點(diǎn)的切線,的中點(diǎn),點(diǎn),四邊形是平行四邊形.

1)求的長(zhǎng):

2的切線嗎?若是,給出證明;若不是,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

如圖①,在中中,,,過(guò)點(diǎn),將繞點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn),得到,連接,記旋轉(zhuǎn)角為

1)問(wèn)題發(fā)現(xiàn)

如圖②,當(dāng)時(shí),__________;如圖③,當(dāng)時(shí),__________

2)拓展探究

試判斷:當(dāng)時(shí),的大小有無(wú)變化?請(qǐng)僅就圖④的情形給出證明.

3)問(wèn)題解決

如圖⑤,當(dāng)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至點(diǎn)落在邊上時(shí),求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了慶祝五四青年節(jié),我市某中學(xué)舉行了書法比賽,賽后隨機(jī)抽查部分參賽同學(xué)成績(jī)(滿分為100分),并制作成圖表如下

分?jǐn)?shù)段

頻數(shù)

頻率

60≤x70

30

0.15

70≤x80

m

0.45

80≤x90

60

n

90≤x≤100

20

0.1

請(qǐng)根據(jù)以上圖表提供的信息,解答下列問(wèn)題:

1)這次隨機(jī)抽查了   名學(xué)生;表中的數(shù)m   n   ;

2)請(qǐng)?jiān)趫D中補(bǔ)全頻數(shù)分布直方圖;

3)若繪制扇形統(tǒng)計(jì)圖,分?jǐn)?shù)段60≤x70所對(duì)應(yīng)扇形的圓心角的度數(shù)是   

4)全校共有600名學(xué)生參加比賽,估計(jì)該校成績(jī)不低于80分的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 在三邊互不相等的ABC中, D,EF分別是AB,ACBC邊的中點(diǎn).連接DE,過(guò)點(diǎn)CCMABDE的延長(zhǎng)線于點(diǎn)M,連接CD、EF交于點(diǎn)N,則圖中全等三角形共有(

A.3對(duì)B.4對(duì)C.5對(duì)D.6對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB>CD,AD=AB+CD.

(1)利用尺規(guī)作ADC的平分線DE,交BC于點(diǎn)E,在AD上截取AF=AB,連接AEEF(保留作圖痕跡,不寫作法)

(2)(1)的條件下,證明:EC=EF;AEDE

查看答案和解析>>

同步練習(xí)冊(cè)答案