【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).
(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)寫出點(diǎn)B的坐標(biāo);
(3)將△ABC向右平移5個(gè)單位長(zhǎng)度,向下平移2個(gè)單位長(zhǎng)度,畫出平移后的圖形△A′B′C′;
(4)計(jì)算△A′B′C′的面積﹒
(5)在x軸上存在一點(diǎn)P,使PA+PC最小,直接寫出點(diǎn)P的坐標(biāo).
【答案】(1)詳見解析;(2)B(-2,1);(3)詳見解析;(4)4;(5)P(,0).
【解析】
(1)直接利用已知點(diǎn)位置得出x,y軸的位置;
(2)利用平面直角坐標(biāo)系得出B點(diǎn)坐標(biāo)即可;
(3)直接利用平移的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案;
(4)利用△A′B′C′所在矩形形面積減去周圍三角形面積進(jìn)而得出答案.
(5)作C關(guān)于x軸的對(duì)稱點(diǎn)D,連接AD交x軸一點(diǎn)就為所求點(diǎn).
(1)如圖所示,∵點(diǎn)A的坐標(biāo)為(﹣4,5),
∴在A點(diǎn)y軸向右平移4個(gè)單位,x軸向下平移5個(gè)單位得到即可;
(2)B(﹣2,1);
(3)如圖所示:△A′B′C′即為所求;
(4)△A′B′C′的面積為:3×4﹣×3×2﹣×1×2﹣×2×4=4.
(5)作點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)D(-1,-3),連接AD交x軸于一點(diǎn),該點(diǎn)為所求點(diǎn).
設(shè)直線AD:y=kx+b,將A(-4,5),D(-1,-3)代入
解得:
直線AD:
令y=0,則x=
∴P點(diǎn)坐標(biāo)為(,0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為美化校園,計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.
(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬元,乙隊(duì)為0.25萬元,要使這次的綠化總費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△OAB的邊長(zhǎng)為2,點(diǎn)B在x軸上,反比例函數(shù)的圖象經(jīng)過A點(diǎn),將△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α(0°<α<360°),使點(diǎn)A落在雙曲線上,則α=________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(5,3),B(6,5),C(4,6).
(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo).
(2)將△A1B1C1向左平移6個(gè)單位,再向上平移5個(gè)單位,畫出平移后得到的△A2B2C2,并寫出點(diǎn)B2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2:
(1)求反比例函數(shù)的表達(dá)式;
(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商場(chǎng)銷售一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下.若每千克漲價(jià)1元,日銷售量將減少20千克.
(1)現(xiàn)該商場(chǎng)要保證每天盈利6000元,同時(shí)又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?
(2)每千克水果漲價(jià)多少元時(shí),商場(chǎng)每天獲得的利潤(rùn)最大?獲得的最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AB為⊙O的直徑,C是⊙O上一點(diǎn),如圖,AB=12,BC=4.BH與⊙O相切于點(diǎn)B,過點(diǎn)C作BH的平行線交AB于點(diǎn)E.
(1)求CE的長(zhǎng);
(2)延長(zhǎng)CE到F,使EF=,連接BF并延長(zhǎng)BF交⊙O于點(diǎn)G,求BG的長(zhǎng);
(3)在(2)的條件下,連接GC并延長(zhǎng)GC交BH于點(diǎn)D,求證:BD=BG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①所示是邊長(zhǎng)為的大正方形中有一個(gè)邊長(zhǎng)為的小正方形.圖②是由圖①中陰影部分拼成的一個(gè)長(zhǎng)方形.
(1)設(shè)圖①中陰影部分的面積為,圖②中陰影部分的面積為,請(qǐng)用含的式子表示: , ;(不必化簡(jiǎn))
(2)以上結(jié)果可以驗(yàn)證的乘法公式是 ;
(3)利用(2)中得到的公式,計(jì)算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程.
若該方程有實(shí)數(shù)根,求的取值范圍.
若該方程一個(gè)根為,求方程的另一個(gè)根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com