【題目】如圖,E為正方形ABCDCD邊上一點(diǎn),∠DAE=30°,PAE的中點(diǎn),過點(diǎn)P作直線分別與AD、BC相交于點(diǎn)M、N.若MN=AE,則∠AMN等于________

【答案】60°或120°

【解析】

畫出符合的兩種情況,過NNFADF,根據(jù)HL證出RtMFNRtEDA,即可求出答案.

分為兩種情況:①如圖1,

NNFADF,

則∠NFA=MFN=90°,

∵四邊形ABCD是正方形,

AD=AB,DAB=B=D=90°,

∴四邊形AFNB是矩形,

NF=AB=AD,

∵∠NFM=D=90°,

RtMFNRtEDA

RtMFNRtEDA(HL),

∴∠AMN=AED

∵∠DAE=30°,D=90°,

∴∠AMN=AED=180°30°90°=60°;

②如圖2,

同法可求RtMFNRtEDA

所以∠FMN=AED=60°,

所以∠AMN=180°60°=120°.

故答案為:60°120°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠B=45°,∠C=30°,點(diǎn)D是BC上一點(diǎn),連接AD,過點(diǎn)A作AG⊥AD,在AG上取點(diǎn)F,連接DF.延長DA至E,使AE=AF,連接EG,DG,且GE=DF.

(1)若AB=2 ,求BC的長;
(2)如圖1,當(dāng)點(diǎn)G在AC上時(shí),求證:BD= CG;
(3)如圖2,當(dāng)點(diǎn)G在AC的垂直平分線上時(shí),直接寫出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第十二屆全國人大四次會議審議通過的《中華人民共和國慈善法》將于今年9月1日正式實(shí)施,為了了解居民對慈善法的知曉情況,某街道辦從轄區(qū)居民中隨機(jī)選取了部分居民進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的扇形圖.若該轄區(qū)約有居民9000人,則可以估計(jì)其中對慈善法“非常清楚”的居民約有人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解中考考生最喜歡做哪種類型的英語客觀題,2015年志愿者奔赴全市中考各考點(diǎn)對英語客觀題的“聽力部分、單項(xiàng)選擇、完型填空、閱讀理解、口語應(yīng)用”進(jìn)行了問卷調(diào)查,要求每位考生都自主選擇其中一個類型,為此隨機(jī)調(diào)查了各考點(diǎn)部分考生的意向.并將調(diào)查結(jié)果繪制成如圖的統(tǒng)計(jì)圖表(問卷回收率為100%,并均為有效問卷).
被調(diào)查考生選擇意向統(tǒng)計(jì)表

題型

所占百分比

聽力部分

a

單項(xiàng)選擇

35%

完型填空

b

閱讀理解

10%

口語應(yīng)用

c

根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

(1)求本次被調(diào)查的考生總?cè)藬?shù)及a、b、c的值;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)全市參加這次中考的考生共有42000人,試估計(jì)全市考生中最喜歡做“單項(xiàng)選擇”這類客觀題的考生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B、C是圓O上的三點(diǎn),且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點(diǎn)F,則∠BAF等于(  )

A.12.5°
B.15°
C.20°
D.22.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線ab,直線c與直線a、b分別相交于C、D兩點(diǎn),直線d與直線a、b分別相交于A、B兩點(diǎn).

(1)如圖1,當(dāng)點(diǎn)P在線段AB上(不與A、B兩點(diǎn)重合)運(yùn)動時(shí),∠1、2、3之間有怎樣的大小關(guān)系?請說明理由;

(2)如圖2,當(dāng)點(diǎn)P在線段AB的延長線上運(yùn)動時(shí),∠1、2、3之間的大小關(guān)系為________;

(3)如圖3,當(dāng)點(diǎn)P在線段BA的延長線上運(yùn)動時(shí),∠1、2、3之間的大小關(guān)系為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,9),與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E、B.

(1)求二次函數(shù)y=ax2+bx+c的表達(dá)式;
(2)過點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)P在AC上方),作PD平行與y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積;
(3)若點(diǎn)M在拋物線上,點(diǎn)N在其對稱軸上,使得以A、E、N、M為頂點(diǎn)的四邊形是平行四邊形,且AE為其一邊,求點(diǎn)M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C是線段AB的中點(diǎn).

(1)若點(diǎn)DCB上,且DB=1.5cm,AD=6.5cm,求線段CD的長度.

(2)若將(1)中的點(diǎn)DCB改為點(diǎn)DCB的延長線上,其它條件不變,請畫出相應(yīng)的示意圖,并求出此時(shí)線段CD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y= 的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.

(1)求函數(shù)y=kx+b和y= 的表達(dá)式;
(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案