【題目】已知拋物線G有最低點。

1)求二次函數(shù)的最小值(用含m的式子表示);

2)將拋物線G向右平移m個單位得到拋物線G1。經(jīng)過探究發(fā)現(xiàn),隨著m的變化,拋物線G1頂點的縱坐標y與橫坐標x之間存在一個函數(shù)關系,求這個函數(shù)關系式,并寫出自變量x的取值范圍;

3)記(2)所求的函數(shù)為H,拋物線G與函數(shù)H的圖像交于點P,結合圖像,求點P的縱坐標的取值范圍.

【答案】1)二次函數(shù)的最小值是;(2;(3)-43.

【解析】

1)拋物線有最低點即開口向上,m0,用配方法或公式法求得對稱軸和函數(shù)最小值.

2)寫出拋物線G的頂點式,根據(jù)平移規(guī)律即得到拋物線G1的頂點式,進而得到拋物線G1頂點坐標(m+1,-m-3),即x=m+1y=-m-3,x+y=-2即消去m,得到yx的函數(shù)關系式.再由m0,即求得x的取值范圍.

3)求出拋物線恒過點B2,-4),函數(shù)H圖象恒過點A2-3),由圖象可知兩圖象交點P應在點A、B之間,即點P縱坐標在A、B縱坐標之間.

解:(1)∵y=mx2-2mx-3=mx-12-m-3,拋物線有最低點,

∴二次函數(shù)y=mx2-2mx-3的最小值為-m-3.

2)∵拋物線Gy=mx-12-m-3,

∴平移后的拋物線G1y=mx-1-m2-m-3,

∴拋物線G1頂點坐標為(m+1-m-3,

x=m+1,y=-m-3,

x+y=m+1-m-3=-2.

x+y=-2,變形得y=-x-2.

m0,m=x-1.

x-10,

x1,

yx的函數(shù)關系式為y=-x-2x1.

3)如圖,函數(shù)Hy=-x-2x1)圖象為射線,

x=1時,y=-1-2=-3x=2時,y=-2-2=-4,

∴函數(shù)H的圖象恒過點B2,-4,

∵拋物線Gy=mx-12-m-3,

x=1時,y=-m-3x=2時,y=m-m-3=-3.

∴拋物線G恒過點A2-3,

由圖象可知,若拋物線與函數(shù)H的圖象有交點P,則yByPyA,

∴點P縱坐標的取值范圍為-4yP-3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則下列結論中正確的是( )

A.

B. 時,的增大而減小

C.

D. 是關于的方程的一個根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,BD是半圓O的直徑,ABD延長線上的一點,BCAE,交AE的延長線于點C,交半圓O于點F,且E為弧DF的中點.

1)求證:AC是半圓O的切線;

2)若BC8,BE6,求半徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yx2+m+1xm2m0)與x軸交于AB兩點,與y軸交于點C,不論m取何正數(shù),經(jīng)過A、BC三點的⊙P恒過y軸上的一個定點,則該定點的坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王老師將1個黑球和若干個白球放入一個不透明的口袋并攪勻,讓若干學生進行摸球實驗,每次摸出一個球(有放回),下表是活動進行中的一組統(tǒng)計數(shù)據(jù)。

摸球的次數(shù)n

100

150

200

500

800

1000

摸到黑球的次數(shù)m

23

31

60

130

203

251

摸到黑球的頻率mn

0.23

0.21

0.30

0.26

0.253

(1)補全上表中的有關數(shù)據(jù),根據(jù)上表數(shù)據(jù)估計從袋中摸出一個球是黑球的概率是______;(保留小數(shù)點后兩位)

(2)估算袋中白球的個數(shù);

(3)(2)的條件下,若小強同學有放回地連續(xù)兩次摸球,用畫樹形圖或列表的方法計算他兩次都摸出白球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,拋物線與直線交于,兩點,點是拋物線的頂點.

1)求拋物線的解析式;

2)點是直線上方拋物線上的一個動點,其橫坐標為,過點軸的垂線,交直線于點,當線段的長度最大時,求的值及的最大值.

3)在拋物線上是否存在異于、的點,使邊上的高為,若存在求出點的坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCDBE平分∠ABC,DE平分∠ADC,∠BAD70°,∠BCD40°,則∠BED的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ABAC2,∠BAC120°,DBC邊上的點,將DAD點逆時針旋轉120°得到DE

1)如圖1,若ADDC,則BE的長為   ,BE2+CD2AD2的數(shù)量關系為   ;

2)如圖2,點DBC邊山任意一點,線段BE、CDAD是否依然滿足(1)中的關系,試證明;

3M為線段BC上的點,BM1,經(jīng)過B、E、D三點的圓最小時,記D點為D1,當D點從D1處運動到M處時,E點經(jīng)過的路徑長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB的直徑,BC的切線,弦ADOC,直線CD交的BA延長線于點E,連接BD.下列結論:①CD的切線;②;③;④.其中正確結論的個數(shù)有(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習冊答案