【題目】如圖,菱形的對角線BD,AC的長分別是6和8,求菱形的周長與面積.
【答案】解:菱形的對角線BD,AC的長分別是6和8,
則菱形的面積為 ×6×8=24,
菱形對角線互相垂直平分,
∴BO=OD=3,AO=OC=4,
∴AB= =5,
故菱形的周長為20,
答:菱形的周長為20,面積為24.
【解析】根據(jù)菱形的對角線可以求得菱形ABCD的面積,根據(jù)菱形對角線互相垂直平分的性質(zhì),可以求得BO=OD,AO=OC,在Rt△AOB中,根據(jù)勾股定理可以求得AB的長,即可求菱形ABCD的周長.
【考點精析】解答此題的關(guān)鍵在于理解菱形的性質(zhì)的相關(guān)知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程4x2=81化成一元二次方程的一般形式后,其中的二次項系數(shù)、一次項系數(shù)和常數(shù)項分別是( 。
A.4,0,81B.﹣4,0,81C.4,0,﹣81D.﹣4,0,﹣81
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種植物的主干長出若干數(shù)目的枝干,每個枝干又長出同樣數(shù)目的小分支,主干、枝干和小分支的總數(shù)是91,設(shè)每個枝干長出x小分支,列方程為( 。
A.(1+x)2=91B.1+x+x2=91C.(1+x)x=91D.1+x+2x=91
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為30,點M為線段AB上一動點,將等邊△ABC沿過點M的直線折疊,使點A落在直線BC上的點D處,且BD∶DC=1∶4,折痕與直線AC交于點N,則AN的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,過點E作EF∥AB,交BC于點F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時,四邊形DBFE是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,∠3=∠4,∠BOD=∠AOB=90°.下列判斷:①射線OF是∠BOE的角平分線;②∠DOE的補角是∠BOC;③∠AOC的余角只有∠COD;④∠DOE的余角有∠BOE和∠COD;⑤∠COD=∠BOE.其中正確的有( )
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com