【題目】如圖,已知AB是⊙O的直徑,弦CDAB于點(diǎn)E.點(diǎn)P是劣弧上任一點(diǎn)(不與點(diǎn)AD重合),CPAB于點(diǎn)M,APCD的延長(zhǎng)相交于點(diǎn)F

1)設(shè)∠CPFα,∠BDCβ,求證:αβ+90°;

2)若OEBE,設(shè)tanAFCx,求∠APC的度數(shù);

②求y關(guān)于x的函數(shù)表達(dá)式及自變量x的取值范圍.

【答案】1)證明見解析;(2APC60°;②yx,(0x).

【解析】

1CDAB,則∠APC+∠CDB90,即:180α+β90,即可求解;

2)①證明△BOD為等邊三角形,則∠CDB30,即可求解;

②在△CBM中,CHHBBC得:,得:,即可求解.

1)∵CDAB,

∴∠APC+∠CDB90,即:180α+β90,

αβ+90;

2)如圖1,連接OD

①OEBE,OBCD,設(shè)圓的半徑為r,

∴∠BOD=∠OBD=∠ODB60,

即:△BOD為等邊三角形,

BCr,

∴∠CDB30,

∴∠APC903060;

連接BC,過點(diǎn)MMHBC于點(diǎn)H,

則∠MCB=∠FAB,∴∠CMH=∠F

在△CBM中,設(shè)BCr,∠CBA60,

MHBMsinCBAMB

BHMB,CHMHtanCMHMHx,

CH+HBBC,即

,而AM+BM2r,

即:

1x1+y,

即:yx,(0x).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),其對(duì)稱軸,為拋物線上第二象限的一個(gè)動(dòng)點(diǎn).

1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);

2)當(dāng)點(diǎn)在運(yùn)動(dòng)過程中,求四邊形面積最大時(shí)的值及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形ABCD的頂點(diǎn)Bx軸的正半軸上,點(diǎn)A坐標(biāo)為(-4,0),點(diǎn)D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點(diǎn)C,則k的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB為直徑,點(diǎn)M為AB延長(zhǎng)線上的一點(diǎn),MC與⊙O相切于點(diǎn)C,圓周上有另一點(diǎn)D與點(diǎn)C分居直徑AB兩側(cè),且使得MC=MD=AC,連接AD.現(xiàn)有下列結(jié)論:①M(fèi)D與⊙O相切;②四邊形ACMD是菱形;③AB=MO;④∠ADM=120°,其中正確的結(jié)論有(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段ABa,點(diǎn)PAB中垂線MN上的一動(dòng)點(diǎn),過點(diǎn)P作直線CDAB.若在直線CD上存在點(diǎn)Q使得△ABQ為等腰三角形,且滿足條件的點(diǎn)Q有且只有3個(gè),則PM的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊ACD,等邊ABE已知BAC=30°,EFAB,垂足為F,連接DF

(1)試說明AC=EF;

(2)求證:四邊形ADFE是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小賣部從批發(fā)市場(chǎng)購(gòu)進(jìn)一批李子,在銷售了部分李子之后,余下的每千克降價(jià)3元,直至全部售完.銷售金額(元)與李子銷售量(千克)之間的關(guān)系如圖所示.若銷售這批李子一共贏利220元,那么這批李子的進(jìn)價(jià)是_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形是正方形,且,點(diǎn)重合,以為圓心,作半徑長(zhǎng)為5的半圓,交于點(diǎn),交于點(diǎn),交的延長(zhǎng)線于點(diǎn).

發(fā)現(xiàn)是半圓上任意一點(diǎn),連接,則的最大值為______;

思考如圖2,將半圓繞點(diǎn)逆時(shí)針旋轉(zhuǎn),記旋轉(zhuǎn)角為

1)當(dāng)時(shí),求半圓落在正方形內(nèi)部的弧長(zhǎng);

2)在旋轉(zhuǎn)過程中,若半圓與正方形的邊相切時(shí),請(qǐng)直接寫出此時(shí)點(diǎn)到切點(diǎn)的距離.(注:,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下是通過折疊正方形紙片得到等邊三角形的步驟取一張正方形的紙片進(jìn)行折疊,具體操作過程如下:

第一步:如圖,先把正方形ABCD對(duì)折,折痕為MN;

第二步點(diǎn)E在線段MD上,將△ECD沿EC翻折,點(diǎn)D恰好落在MN上,記為點(diǎn)P,連接BP可得△BCP是等邊三角形

問題:在折疊過程中,可以得到PB=PC;依據(jù)是________________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案