【題目】已知:如圖,在ABCD中,AD4,AB8,EF分別為邊AB、CD的中點,BD是對角線,AGDBCB的延長線于點G

1)求證:ADE≌△CBF

2)若四邊形BEDF是菱形,求四邊形AGBD的面積.

【答案】(1)詳見解析;(2)16

【解析】

1)根據(jù)SAS證明ADECBF即可.

2)證明四邊形ADBG是矩形,利用勾股定理求出BD即可解決問題.

1)證明:∵四邊形ABCD是平行四邊形,

DABC,∠DAE=∠C,CDAB,

E、F分別為邊ABCD的中點,

AEAB,CFCD

AECF,

∴△ADE≌△CBFSAS).

2)解:∵四邊形ABCD是平行四邊形,

ADBG,

BDAG

∴四邊形ADBG是平行四邊形,

∵四邊形BEDF是菱形,

DEBE,

AEEB

DEAEEB,

∴∠ADE=∠EAD,∠EDB=∠EBD,

∵∠EAD+EDA+EDB+EBD180°,

∴∠EDA+EDB90°

∴∠ADB90°,

∴四邊形ADBG是矩形,

BD,

S矩形ADBGADDB16

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】用若干個小立方塊搭成一個幾何體,使它從正面看與從左面看都是如圖的同一個圖.通過實際操作,并與同學們討論,解決下列問題:

(1)所需要的小立方塊的個數(shù)是多少?你能找出幾種?

(2)畫出所需個數(shù)最少和所需個數(shù)最多的幾何體從上面看到的圖,并在小正方形里注明在該位置上小立方塊的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖象過A(1,3),B(﹣1,﹣1)兩點.

(1)求該一次函數(shù)的表達式;

(2)若點(2a+2,a2)在該一次函數(shù)圖象上,求a的值.

(3)已知點C(x1,y1)和點D(x2,y2)在該一次函數(shù)圖象上,設(shè)m=(x1﹣x2)(y1﹣y2),判斷反比例函數(shù)y=的圖象所在的象限,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在六邊形中,,分別平分,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊ADy軸,垂足為點E,頂點A在第二象限,頂點By軸的正半軸上,反比例函數(shù)y(k≠0x0)的圖象經(jīng)過頂點C、D,若點C的橫坐標為5,BE3DE,則k的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形 OABC,O 為坐標原點,已知 A(4,0)、C(0,2),D 為邊 OA 的中點,連接 BD,M 點與 C 點重合,N x 軸上一點,MNBD直線 MN 沿著 x 軸向右平移.

(1)當四邊形 MBDN 為菱形時,N 點的坐標是

(2) MN 平移到何處時,恰好將四邊形 ODBC 的面積為 1:3 的兩部分?請求出此時直線 MN 的解析式;

(3)在(1)的條件下,在矩形 OABC 的四條邊上,是否存在點 F,連接 DF將矩形沿著 DF 所在的直線翻折,使得點 O 恰好落在直線 MN 上,若存在, 求出 F 點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名運動員同時從地出發(fā)前往地,在筆直的公路上進行騎自行車訓練如圖所示,反映了甲、乙兩名運動員在公路上進行訓練時的行駛路程 (千米)與行駛時間 (小時)之間的關(guān)系,下列四種說法:①甲的速度為40千米/小時;②乙的速度始終為50千米/小時;③行駛1小時時,乙在甲前10千米處;④甲、乙兩名運動員相距5千米時,.其中正確的個數(shù)有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCDBCEFAFBEAFBE交于點G,∠AGB=60°.

(1)求證:AFDE;

(2)AB=6,BC=8,求AF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有三個完全相同的小球,分別標有數(shù)字3、4、5.從袋子中隨機取出一個小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個小球,用小球上的數(shù)字作為個位上的數(shù)字,這樣組成一個兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.

查看答案和解析>>

同步練習冊答案