【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,給出以下結(jié)論:①a+b+c<0;②b2-4ac>0;③b>0;④4a-2b+c<0;⑤c-a>1,其中正確的結(jié)論有( )

A. ①②④ B. ①②③ C. ①②⑤ D. ①②④⑤

【答案】C

【解析】

根據(jù)當(dāng)x等于1-2時(shí)y的值,可判斷①④;再根據(jù)開口方向與x軸的交點(diǎn)個數(shù)、對稱軸、與y軸交點(diǎn)位置判斷②③⑤.

由圖象知:當(dāng)x=1時(shí),y=a+b+c<0,①正確;

由圖象可以看出拋物線與x軸有兩個交點(diǎn),可得b2-4ac>0,②正確;

∵圖象開口向上,對稱軸是直線x=-1,

∴a<0,<0,

∴b<0,③錯誤;

當(dāng)x=-2時(shí),y=4a-2b+c=1>0,④錯誤;

由圖象知a<0,c=1,所以c-a>1,⑤正確;

綜上,正確的結(jié)論為①②⑤

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的方程

求證:無論取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;

當(dāng)二次函數(shù)的圖象與軸兩個交點(diǎn)的橫坐標(biāo)均為整數(shù),且為負(fù)整數(shù)時(shí),求出函數(shù)的最大(或最。┲担嫵龊瘮(shù)圖象;

,中拋物線上的兩點(diǎn),且,請你結(jié)合函數(shù)圖象確定實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市團(tuán)委舉辦“我的中國夢”為主題的知識競賽,甲、乙兩所學(xué)校參賽人數(shù)相等,比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為70分、80分、90分、100分,并根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下不完整的統(tǒng)計(jì)圖表:

乙校成績統(tǒng)計(jì)表

分?jǐn)?shù)/分

人數(shù)/人

70

7

80

90

1

100

8

(1)在圖①中,“80分”所在扇形的圓心角度數(shù)為________;

(2)請你將圖②補(bǔ)充完整;

(3)求乙校成績的平均分;

(4)經(jīng)計(jì)算知s2=135,s2=175,請你根據(jù)這兩個數(shù)據(jù),對甲、乙兩校成績作出合理評價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的周長為19,點(diǎn)D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為N,ACB的平分線垂直于AD,垂足為M,若BC=7,則MN的長度為( 。

A. B. 2 C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O在等邊△ABC內(nèi),∠BOC150°,將△BOC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)后,得△ADC,連接OD

(1)COD______三角形.

(2)OB5,OC3,求OA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).

(1)圖2中的陰影部分的面積為  

(2)觀察圖2請你寫出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 ;

(3)根據(jù)(2)中的結(jié)論,若x+y=7,xy=,則x﹣y=  

(4)實(shí)際上通過計(jì)算圖形的面積可以探求相應(yīng)的等式.根據(jù)圖3,寫出一個因式分解的等式 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圓桌面(桌面中間有一個直徑為0.4m的圓洞)正上方的燈泡(看作一個點(diǎn))發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為1.2m,桌面離地面1m,若燈泡離地面3m,則地面圓環(huán)形陰影的面積是( )

A. 0.324πm2 B. 0.288πm2 C. 1.08πm2 D. 0.72πm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A0,2)在y軸上,點(diǎn)Bx軸上,作∠BAC90°,并使ABAC

1)如圖1,若點(diǎn)B的坐標(biāo)為(﹣30),求點(diǎn)C的坐標(biāo).

2)如圖2,若點(diǎn)B的坐標(biāo)為(﹣4,0),連接BCy軸于點(diǎn)D,ACx軸于點(diǎn)E,連接DE,求證:BEAD+DE

3)在(1)的條件下,如圖3,F為(4,0),作∠FAG90°,并使AFAG,連接GCy軸于點(diǎn)H,求點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小亮做摸球試驗(yàn),他將盒子內(nèi)的球攪勻后從中隨機(jī)摸出一個球,記下顏色后放回,不斷重復(fù)上述過程,對試驗(yàn)結(jié)果進(jìn)行統(tǒng)計(jì)后,小玲得到下表中的數(shù)據(jù):

摸球的次數(shù)n

100

200

300

500

800

1000

1500

摸到白球的次數(shù)m

70

128

171

302

481

599

903

摸到白球的頻率

0.70

0.64

0.57

0.604

0.601

0.599

0.602

則下列結(jié)論中正確的是( 。

A. n越大,摸到白球的概率越接近0.7

B. 當(dāng)n=2000時(shí),摸到白球的次數(shù)m=1200

C. 當(dāng)n很大時(shí),摸到白球的頻率將會穩(wěn)定在0.6附近

D. 這個盒子中約有28個白球

查看答案和解析>>

同步練習(xí)冊答案