分析:可以先猜想BD是⊙O的切線,根據(jù)切線的判定進(jìn)行分析,得到OD是圓的半徑,且OD⊥BD,從而可得到結(jié)論。
解答:BD是⊙O的切線。
連接OD;
∵OA=OD,
∴∠ADO=∠A=30°,
∵∠A=∠B=30°,
∴∠BDA=180°-(∠A+∠B)=120°,
∴∠BDO=∠BDA-∠ADO=90°,
即OD⊥BD,
∴BD是⊙O的切線。
理由1:連接OD,∵OA=OD,
∴∠ADO=∠A=30°,
∵∠A=∠B=30°,
∴∠BDA=180°-(∠A+∠B)=120,
∴∠BDO=∠BDA-∠ADO=90°,即OD⊥BD.
∴BD是⊙O的切線。
理由2:連接OD,
∵OA=OD,
∴∠ADO=∠A=30°,
∴∠BOD=∠ADO+A=60°,
∵∠B=30°,
∴∠BDO=180°-(∠BOD+∠B)=90°,
即OD⊥BD,
∴BD是⊙O的切線。
理由3:連接OD,∵OA=OD,
∴∠ADO=∠A=30°,
在BD的延長線上取一點E,
∵∠A=∠B=30°,
∴∠ADE=∠A+∠B=60°,
∴∠EDO=∠ADO+∠ADE=90°,即OD⊥BD
∴BD是⊙O的切線。
理由4:連接OD,∵OA=OD,
∴∠ADO=∠A=30°,
連接CD,則∠ADC=90°,
∴∠ODC=∠ADC-∠ADO=60°,
∵OD=OC,
∴∠OCD=60°,
∵∠B=30°,
∴∠BDC=∠OCD-∠B=30°,
∴∠ODB=∠ODC+∠BDC=90°,
即OD⊥BD,
∴BD是⊙O的切線。
點評:本題考查切線的判定方法及圓周角定理的綜合運用。