【題目】已知函數(shù)x軸、y軸分別交于A、B兩點(diǎn),C點(diǎn)坐標(biāo)是(0,2),連接AC

1)直接寫出A、B兩點(diǎn)的坐標(biāo):A______,_____)、B_____,_____);

2)在AB上找一點(diǎn)P,當(dāng)PC+PO最小時(shí),在AC上找一點(diǎn)Q使得PQ+最小,求Q點(diǎn)坐標(biāo);

3)在(2)的條件下,平面內(nèi)能否找到一點(diǎn)K,使得點(diǎn)AC、PK構(gòu)成的四邊形是平行四邊形,若能,直接寫出K點(diǎn)坐標(biāo),若不能,請(qǐng)說明理由.

【答案】1)(,0),(0,6);(2Q);(3)能,K,)或K,)或K,).

【解析】

1)在一次函數(shù)解析式中,分別令y=0x=0即可求出AB的坐標(biāo);

2)作點(diǎn)O關(guān)于AB的對(duì)稱點(diǎn)O,連接C OAB交于P點(diǎn),則P點(diǎn)即為使得CP+OP最小的點(diǎn).過OODx軸.可求出 O的坐標(biāo),OC的解析式.由P的坐標(biāo).過QQHx軸于H,與AC交于Q點(diǎn).由含30°直角三角形的性質(zhì)可得QH=AQ,即可得到當(dāng)PHx軸時(shí)與AC交點(diǎn)Q即為所求,即可得出點(diǎn)Q的坐標(biāo);

3)設(shè)Kx,y),點(diǎn)A、CP、K構(gòu)成的四邊形是平行四邊形,分三種情況討論:

①若AK,CP是對(duì)角線;②若APCK是對(duì)角線;③若AC,KP是對(duì)角線,;分別利用平行四邊形對(duì)角線的交點(diǎn)平分對(duì)角線和中點(diǎn)坐標(biāo)公式即可得出點(diǎn)K的坐標(biāo).

1)在中,令y=0,解得:x=,令x=0,解得:y=6,∴A0),B0,6);

2)作點(diǎn)O關(guān)于AB的對(duì)稱點(diǎn)O,連接C OAB交于P點(diǎn),則P點(diǎn)即為使得CP+OP最小的點(diǎn).過OODx軸.

OA=OB=6,∴AB=,∴∠ABO=30,∠BAO=60,∴OA=OA=,∠OAB=OAB=60 ∴∠O'AD=60°,∴∠AO'D=30°,∴OD=3AD=,∴ O,3),易求OC解析式為:

P,).

QQHx軸于H,與AC交于Q點(diǎn).

OC=2OA=,∴∠CAO=30,∴QH=AQ,∴當(dāng)PHx軸時(shí)與AC交點(diǎn)Q即為所求.

易求直線AC的解析式為,把x=代入,得y=,∴Q).

3)設(shè)Kx,y).

P),A0),C02),點(diǎn)AC、P、K構(gòu)成的四邊形是平行四邊形,∴分三種情況討論:

①若AK,CP是對(duì)角線,則 ,,解得:x=,y=,∴ K,);

②若AP,CK是對(duì)角線,則 ,,解得:x=,y=,∴ K,);

③若ACKP是對(duì)角線,則 ,解得:x=y=,∴ K);

綜上所述:K)或K,)或K,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法,其中正確的個(gè)數(shù)是( 。

①整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù);②絕對(duì)值是它本身的數(shù)只有0;③兩數(shù)之和一定大于每個(gè)加數(shù);④如果兩個(gè)數(shù)積為0,那么至少有一個(gè)因數(shù)為0;⑤0是最小的有理數(shù),;⑥數(shù)軸上表示互為相反數(shù)的點(diǎn)位于原點(diǎn)的兩側(cè);⑦幾個(gè)有理數(shù)相乘,如果負(fù)因數(shù)的個(gè)數(shù)是奇數(shù),那么積為負(fù)數(shù),

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,且OB=OC,下列結(jié)論:①b1b2;b24ac4a2a;其中正確的個(gè)數(shù)為(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),∠APB=60°,連接PO并延長與⊙O交于C點(diǎn),連接AC,BC.

(1)求證:四邊形ACBP是菱形;

(2)若⊙O半徑為1,求菱形ACBP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:矩形ABCD中,AB=4,BC=3,點(diǎn)MN分別在邊AB、CD上,直線MN交矩形對(duì)角線 AC于點(diǎn)E,將AME沿直線MN翻折,點(diǎn)A落在點(diǎn)P處,且點(diǎn)P在射線CB.

(1)如圖1,當(dāng)EPBC時(shí),求CN的長;

(2) 如圖2,當(dāng)EPAC時(shí),求AM的長;

(3) 請(qǐng)寫出線段CP的長的取值范圍,及當(dāng)CP的長最大時(shí)MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AMBN,∠A=60°.點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D

1)求∠CBD的度數(shù);

2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫出它們之間的關(guān)系,并說明理由;若變化,請(qǐng)寫出變化規(guī)律.

3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使ACB=∠ABD時(shí),直接寫出ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將一個(gè)圓依次二等分、三等分、四等分、五等分…,并按圖中規(guī)律在半徑上擺放黑色棋子,則第一幅圖中有5個(gè)棋子,第二幅圖中有10個(gè)棋子,第三幅圖中有17個(gè)棋子,第四幅圖中有26個(gè)棋子,依此規(guī)律,則第6幅圖中所含棋子數(shù)目為( )

A.51 B.50 C.49 D.48

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行1500米比賽,在比賽時(shí),兩人所跑的路程y()與所用的時(shí)間x()間的函數(shù)關(guān)系如圖所示,解答下列問題:

(1)求甲的速度等于多少米/分;

(2)當(dāng)乙到終點(diǎn)時(shí),甲距離終點(diǎn)有多遠(yuǎn);

(3)乙在距終點(diǎn)多遠(yuǎn)處追上了甲.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在矩形ABCD中,∠ADC的平分線DEBC邊所在的直線交于點(diǎn)E,點(diǎn)P是線段DE上一定點(diǎn)(其中EP<PD
1)如圖1,若點(diǎn)FCD邊上(不與D重合),將∠DPF繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,角的兩邊PD、PF分別交射線DA于點(diǎn)H、G
①求證:PG=PF

②探究:DF、DG、DP之間有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.
2)拓展:如圖2,若點(diǎn)FCD的延長線上(不與D重合),過點(diǎn)PPGPF,交射線DA于點(diǎn)G,你認(rèn)為(1)中DE、DG、DP之間的數(shù)量關(guān)系是否仍然成立?若成立,給出證明;若不成立,請(qǐng)寫出它們所滿足的數(shù)量關(guān)系式,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案