【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格銷售,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.

1)求平均每天銷售量箱與銷售價(jià)/箱之間的函數(shù)關(guān)系式.

2)求該批發(fā)商平均每天的銷售利潤(rùn)w(元)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式.

3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?

【答案】1)由題意得:

y=90-3x-50

化簡(jiǎn)得:y=-3x+240;

2)由題意得:

w=x-40)(-3x+240

=-3x2+360x-9600

3w=-3x2+360x-9600

∵a=-30,

拋物線開(kāi)口向下.

當(dāng)時(shí),w有最大值.

x60,wx的增大而增大.

當(dāng)x=55元時(shí),w的最大值為1125元.

當(dāng)每箱蘋果的銷售價(jià)為55元時(shí),可以獲得1125元的最大利潤(rùn).

【解析】

試題本題是通過(guò)構(gòu)建函數(shù)模型解答銷售利潤(rùn)的問(wèn)題.依據(jù)題意易得出平均每天銷售量(y)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式為y=90﹣3x﹣50),然后根據(jù)銷售利潤(rùn)=銷售量×(售價(jià)進(jìn)價(jià)),列出平均每天的銷售利潤(rùn)w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式,再依據(jù)函數(shù)的增減性求得最大利潤(rùn).

解:(1)由題意得:

y=90﹣3x﹣50

化簡(jiǎn)得:y=﹣3x+240;(3分)

2)由題意得:

w=x﹣40y

x﹣40)(﹣3x+240

=﹣3x2+360x﹣9600;(3分)

3w=﹣3x2+360x﹣9600

∵a=﹣30,

拋物線開(kāi)口向下.

當(dāng)時(shí),w有最大值.

x60,wx的增大而增大.

當(dāng)x=55元時(shí),w的最大值為1125元.

當(dāng)每箱蘋果的銷售價(jià)為55元時(shí),可以獲得1125元的最大利潤(rùn).(4分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD為菱形,點(diǎn)EF、GH分別為各邊中點(diǎn),判斷E、F、GH四點(diǎn)是否在同一個(gè)圓上,如果在同一圓上,找到圓心,并證明四點(diǎn)共圓;如果不在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,上一點(diǎn),的延長(zhǎng)線上,且

(1)求證:的切線;

(2)的半徑為,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車清洗店,清洗一輛汽車定價(jià)20元時(shí)每天能清洗45輛,定價(jià)25元時(shí)每天能清洗30輛,假設(shè)清洗汽車輛數(shù)(輛)與定價(jià)(元)(取整數(shù))是一次函數(shù)關(guān)系(清洗每輛汽車成本忽略不計(jì)).

1)求之間的函數(shù)表達(dá)式;

2)若清洗一輛汽車定價(jià)不低于15元且不超過(guò)50元,且該汽車清洗店每天需支付電費(fèi)、水費(fèi)和員工工資共計(jì)200元,問(wèn):定價(jià)為多少時(shí),該汽車清洗店每天獲利最大?最大獲利多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=﹣2x+6與拋物線yax2+bx+c相交于AB兩點(diǎn),且點(diǎn)A1,4)為拋物線的頂點(diǎn),點(diǎn)Bx軸上

1)求拋物線的解析式;

2)在(1)中拋物線的第三象限圖象上是否存在一點(diǎn)P,使△POB≌△POC?若存在,求出點(diǎn)P的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=-2x+1與拋物線y=x2-2x+c的一個(gè)交點(diǎn)為點(diǎn)A,作點(diǎn)A關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)A,當(dāng)A剛好落在y軸上時(shí),c的值為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖像與x軸交于A,B兩點(diǎn),B點(diǎn)坐標(biāo)為(4,0),與y軸交于點(diǎn)C(0,4).點(diǎn)D為拋物線上一點(diǎn)

(1)求拋物線的解析式及A點(diǎn)坐標(biāo);

(2)若△BCD是以BC為直角邊的直角三角形時(shí),求點(diǎn)D的坐標(biāo);

(3)△BCD是銳角三角形,請(qǐng)直接寫出點(diǎn)D的橫坐標(biāo)m的取值范圍 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明從二次函數(shù)y=ax2+bx+c的圖象(如圖)中觀察得到了下面五條信息:①abc0 ; 2a3b=0 ; b24ac0;④a+b+c0; 4bc.則其中結(jié)論正確的個(gè)數(shù)是( 。

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,的直徑,弦,的平分線交于E,且.

1)求,的長(zhǎng)

2)圖中還有一條線段的長(zhǎng)是否能確定,若能求出的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案