【題目】如圖,,,.給出下列結論:①;②;③;④.其中正確結論的序號是__________.

【答案】①②③

【解析】

根據(jù)三角形的內角和定理求出∠EAB=FAC,即可判斷①;根據(jù)AAS證△EAB≌△FAC,即可判斷②;推出AC=AB,根據(jù)ASA即可證出③;不能推出CDDN所在的三角形全等,也不能用其它方法證出CD=DN

∵∠E=F=90,∠B=C,

∵∠E+B+EAB=180,∠F+C+FAC=180,

∴∠EAB=FAC,

∴∠EABCAB=FACCAB,

即∠1=2,∴①正確;

在△EAB和△FAC

∴△EAB≌△FAC,

BE=CFAC=AB,∴②正確;

在△ACN和△ABM

∴△ACN≌△ABM,∴③正確;

∵根據(jù)已知不能推出CD=DN

∴④錯誤;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AQBN、CNDQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分線,AQBN相交于點P,CNDQ相交于點M,判斷四邊形MNPQ的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明租用共享單車從家出發(fā),勻速騎行到相距2400米的郵局辦事.小明出發(fā)的同時,他的爸爸以每分鐘100米的速度從郵局沿同一條道路步行回家,小明在郵局停留了2分鐘后沿原路按原速返回.設他們出發(fā)后經(jīng)過t(分)時,小明與家之間的距離為s1(米),小明爸爸與家之間的距離為s2(米),圖中折線OABD,線段EF分別表示s1,s2t之間的函數(shù)關系的圖象.

1)求s1t之間的函數(shù)表達式;

2)小明從家出發(fā),經(jīng)過_______分在返回途中追上爸爸.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)請在橫線上填寫合適的內容,完成下面的證明:

如圖如果ABCD,求證:∠APC=∠A+C

證明:過PPMAB

所以∠A=∠APM,(   )

因為PMAB,ABCD(已知)

所以∠C   (   )

因為∠APC=∠APM+CPM

所以∠APC=∠A+C(等量代換)

(2)如圖ABCD,根據(jù)上面的推理方法,直接寫出∠A+P+Q+C   

(3)如圖ABCD,若∠ABPx,∠BPQy,∠PQCz,∠QCDm,則m   (x、y、z表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCDADBC, B=60°,AB=AD=BO=4cm,OC=8cm, MB點出發(fā),按從B→A→D→C的方向,沿四邊形BADC的邊以1cm/s的速度作勻速運動,運動到點C即停止.若運動的時間為t,MOD的面積為y,y關于t的函數(shù)圖象大約是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的大致圖象如圖,關于該二次函數(shù),下列說法錯誤的是( )

A. 函數(shù)有最小值

B. 對稱軸是直線x=

C. x,yx的增大而減小

D. ﹣1x2時,y0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線ABx軸于點A4 0),交y軸于點B0 4),

1如圖,若C的坐標為(-1, ,0),且AHBC于點H,AHOB于點P,試求點P的坐標;

2在(1)的條件下,如圖2,連接OH,求證:∠OHP=45°

3如圖3,若點DAB的中點,點My軸正半軸上一動點,連結MD,過點DDNDMx軸于N點,當M點在y軸正半軸上運動的過程中,式子的值是否發(fā)生改變?如發(fā)生改變,求出該式子的值的變化范圍;若不改變,求該式子的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知一次函數(shù)k≠0)的圖象與x軸、y軸分別交于AB兩點,且與反比例函數(shù)m≠0)的圖象在第一象限交于C點,CD垂直于x軸,垂足為D.若OA=OB=OD=1

1)求點A、BD的坐標;

2)求一次函數(shù)和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ABCD,∠A=∠C=100°,E、FCD上,且滿足∠DBF=∠ABD,BE平分∠CBF

1)直線ADBC有何位置關系?請說明理由.

2)求∠DBE的度數(shù).

3)若把AD左右平行移動,在平行移動AD的過程中,是否存在某種情況,使∠BEC=ADB?若存在,求出此時∠ADB的度數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案