【題目】如圖1,二次函數(shù)y=-x2+2x+3的圖象與x軸交于點A、B,與y軸交于點C,頂點為D

1)寫出A、BD三點的坐標(biāo);

2)若P0t)(t-1)是y軸上一點,Q-5,0),將點Q繞著點P順時針方向旋轉(zhuǎn)90°得到點E.當(dāng)點E恰好在該二次函數(shù)的圖象上時,求t的值;

3)在(2)的條件下,連接AD、AE.若M是該二次函數(shù)圖象上一點,且∠DAE=MCB,求點M的坐標(biāo).

【答案】1A-1,0),B30),D1,4);(2)所求t的值為-2;(3M()M4,-5).

【解析】

1y=-x2+2x+3,令x=0,則y=3,令y=0,則x=3-1,即可求解;
2)△EPH≌△PQOAAS),則EH=OP=-t,HP=OQ=5,E-t,5+t),當(dāng)點E恰好在該二次函數(shù)的圖象上時,有5+t=-t2-2t+3,即可求解;
3)分點Mx軸上、點Mx軸兩種情況,分別求解即可.

1y=-x2+2x+3,令x=0,則y=3,令y=0,則x=3-1,
故:A-1,0),B3,0),D1,4);

2)如圖1,過點EEHy軸于點H,

∵∠PQO+OPQ=90°,

OPQ+HPE=90°

∴∠HPE=PQO,

由旋轉(zhuǎn)知,PQ=PE,

EPH≌△PQO(AAS)

EH=OP=-t,

HP=OQ=5

E-t,5+t

當(dāng)點E恰好在該二次函數(shù)的圖象上時,

5+t=-t2-2t+3

解得t1=-2,t2=-1(由于t-1所以舍去),

故所求t的值為-2;

3)設(shè)點Ma,-a2+2a+3

①若點Mx軸上方,

如圖2,過點MMNy軸于點N,過點DDFx軸于點F

∵∠EAB=OCB=45°,

DAE=MCB

∴∠MCN=DAF

∴△MCN∽△DAF,

,a2=0(舍去),

M(,) ;

②若點Mx軸下方,

用同樣的方法得M4,-5),

綜上所述,M(,)M4,-5).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人輪流在黑板上寫下不超過 的正整數(shù)(每次只能寫一個數(shù)),規(guī)定禁止在黑板上寫已經(jīng)寫過的數(shù)的約數(shù),最后不能寫的為失敗者,如果甲寫第一個,那么,甲寫數(shù)字時有必勝的策略.

A. 10 B. 9 C. 8D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一條公路旁依次有,三個村莊,甲乙兩人騎自行車分別從村、村同時出發(fā)前往村,甲乙之間的距離與騎行時間之間的函數(shù)關(guān)系如圖所示,下列結(jié)論:

,兩村相距 ②出發(fā)后兩人相遇;

③甲每小時比乙多騎行 ④相遇后,乙又騎行了時兩人相距

其中正確的有_____________________.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,O為原點,點A(20),點P(1m)(m0)和點Q關(guān)于x軸對稱.過點PPBx軸,與直線AQ交于點B,如果APBO,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,是由一些棱長為單位1的相同的小正方體組合成的簡單幾何體.

1)圖中有   個小正方體;

2)請在圖1右側(cè)方格中分別畫出幾何體的主視圖、左視圖;

3)不改變(2)中所畫的主視圖和左視圖,最多還能在圖1中添加   個小正方體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標(biāo)有數(shù)字1,2,3,4,另外有一個可以自由旋轉(zhuǎn)的圓盤,被分成面積相等的3個扇形區(qū)域,分別標(biāo)有數(shù)字1,23(如圖所示).

1)從口袋中摸出一個小球,所摸球上的數(shù)字大于2的概率為 ;

2)小龍和小東想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于5,那么小龍去;否則小東去.你認(rèn)為游戲公平嗎?請用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標(biāo)系中,OAB的三個頂點O0,0)、A4,1)、B4,4)均在格點上.

1)畫出OAB繞原點順時針旋轉(zhuǎn)后得到的,并寫出點的坐標(biāo);

2)在(1)的條件下,求線段在旋轉(zhuǎn)過程中掃過的扇形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線經(jīng)過點和點

(1)求拋物線的解析式及頂點的坐標(biāo);

(2)是拋物線上、之間的一點,過點軸于點,軸,交拋物線于點,過點軸于點,當(dāng)矩形的周長最大時,求點的橫坐標(biāo);

(3)如圖2,連接、,點在線段(不與重合),作,交線段于點,是否存在這樣點,使得為等腰三角形?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廬陽春風(fēng)體育運動品商店從廠家購進(jìn)甲,乙兩種T恤共400件,其每件的售價與進(jìn)貨量m(件)之間的關(guān)系及成本如下表所示:

1)當(dāng)甲種T恤進(jìn)貨250件時,求兩種T恤全部售完的利潤是多少元.

2)若所有的T恤都能售完,求該店獲得的總利潤y(元)與乙種T恤的進(jìn)貨量x(件)之間的函數(shù)關(guān)系式;

3)在(2)的條件下已知兩種T恤進(jìn)貨量都不低于100件,且所進(jìn)的T恤全部售完,該商店如何安排進(jìn)貨才能獲得的利潤最大?

查看答案和解析>>

同步練習(xí)冊答案