【題目】(2017四川省巴中市,第31題,12分)如圖,已知兩直線l1,l2分別經(jīng)過點A(1,0),點B(﹣3,0),且兩條直線相交于y軸的正半軸上的點C,當(dāng)點C的坐標(biāo)為(0,)時,恰好有l1l2,經(jīng)過點AB、C的拋物線的對稱軸與l1、l2、x軸分別交于點GE、F,D為拋物線的頂點.

(1)求拋物線的函數(shù)解析式;

(2)試說明DGDE的數(shù)量關(guān)系?并說明理由;

(3)若直線l2繞點C旋轉(zhuǎn)時,與拋物線的另一個交點為M,當(dāng)MCG為等腰三角形時,請直接寫出點M的坐標(biāo).

【答案】1;(2DG=DE;(3)(﹣2),(﹣1,).

【解析】試題(1)設(shè)拋物線的函數(shù)解析式為.將點A、BC的坐標(biāo)代入,得到關(guān)于a、bc的方程組,解方程求出a、b、c的值,進(jìn)而得到拋物線的解析式;

(2)利用待定系數(shù)法分別求出直線l1、直線l2的解析式,再求出G、DE的坐標(biāo),計算得出DG的長

(3)當(dāng)MCG為等腰三角形時,分三種情況:GM=GC;②CM=CG;③MC=MG

試題解析:解:(1)設(shè)拋物線的函數(shù)解析式為

A(1,0),點B(﹣3,0),點C(0,)在拋物線上,,解得,∴拋物線的函數(shù)解析式為;

(2)DG=DE.理由如下:

設(shè)直線l1的解析式為y=k1x+b1,將A(1,0),C(0,)代入,解得

設(shè)直線l2的解析式為y=k2x+b2,將B(﹣3,0),C(0,)代入,解得

拋物線與x軸的交點為A(1,0),B(﹣3,0),∴拋物線的對稱軸為直線x=﹣1,又G、D、E均在對稱軸上,G(﹣1,),D(﹣1,),E(﹣1,),∴DG==,DE==,∴DG=DE

(3)若直線l2繞點C旋轉(zhuǎn)時,與拋物線的另一個交點為M,當(dāng)MCG為等腰三角形時,分三種情況:

G為圓心,GC為半徑畫弧交拋物線于點M1C,點M1C關(guān)于拋物線的對稱軸對稱,則M1的坐標(biāo)為(﹣2,);

C為圓心,GC為半徑畫弧交拋物線于點M2、M3,點M2與點A重合,點A、C、G在一條直線上,不能構(gòu)成三角形,M3M1重合;

作線段GC的垂直平分線,交拋物線于點M4、M5,點M4與點D重合,點D的坐標(biāo)為(﹣1,),M5M1重合;

綜上所述滿足條件的點M只有兩個,其坐標(biāo)分別為(﹣2,),(﹣1,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,都是等邊三角形,,下列結(jié)論中,正確的個數(shù)是( );②;③;④若,且,則

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x 的函數(shù)關(guān)系圖象.

(1)求y與x的函數(shù)關(guān)系式;

(2)直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B、C、D為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P3cm/s的速度向點B移動,一直到達(dá)B為止,點Q2cm/s的速度向D移動.

(1)P、Q兩點從出發(fā)開始到幾秒時,四邊形APQD為長方形?

(2)P、Q兩點從出發(fā)開始到幾秒時?四邊形PBCQ的面積為33cm2;

(3)P、Q兩點從出發(fā)開始到幾秒時?點P和點Q的距離是10cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC平分∠BADCEABE,CFADF,且BCCD

1)求證:△BCE≌△DCF;

2)若AB15,AD7BC5,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,四邊形OABC的邊OAOC分別在x軸、y軸的正半軸上,頂點在B點的拋物線交x軸于點A、D,交y軸于點E,連接AB、AE、BE.已知tan∠CBE=,A3,0),D﹣1,0),E0,3).

1)求拋物線的解析式及頂點B的坐標(biāo);

2)求證:CB△ABE外接圓的切線;

3)試探究坐標(biāo)軸上是否存在一點P,使以D、EP為頂點的三角形與△ABE相似,若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由;

4)設(shè)△AOE沿x軸正方向平移t個單位長度(0t≤3)時,△AOE△ABE重疊部分的面積為s,求st之間的函數(shù)關(guān)系式,并指出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡再求值:

1,其中

2)如圖是一個長方體紙盒的平面展開圖,已知紙盒中相對兩個面上的數(shù)互為相反數(shù).

①填空:___________________________;

②先化簡,再求值:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:平行四邊形ABCD,求作菱形AECF,使點E、點F分別在BC、AD邊上

下面是小明設(shè)計的尺規(guī)作圖過程.

作法:如圖

連接AC;

分別以AC為圓心,大于AC的長為半徑作弧,兩弧交于M、N兩點;

連接MN,分別與BC、AD、AC交于E、FO三點;

連接AE、CF

四邊形AECF即為所求

根據(jù)小明設(shè)計的尺規(guī)作圖過程

1)使用直尺和圓規(guī),補全圖形:(保留作圖痕跡)

2)完成下面的證明

證明∵AM= ,AN=

MNAC的垂直平分線。

)(填推理的依據(jù))

EFACOA=OC,

∴平行四邊形ABCD

ADBC

∴∠FAO=ECO

FAOECO

∴△FAO≌△ECO

OE=OF

又∵OA=OC

∴四邊形AECF是平行四邊形

)(填推理依據(jù))

EFAC

∴四邊形AECF是菱形

)(填推理依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,如果在正方形中畫條縱線和條橫線,便把正方形分成部分(如圖①);如果在正方形中畫條縱線和條橫線,便把正方形分成部分(如圖②);如果在正方形中畫條縱線和條橫線,便把正方形分成部分(如圖③...如果在正方形中畫條縱線和條橫線.便把正方形分成( )部分

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案