【題目】為了迎接省一級示范學(xué)校的驗(yàn)收,廣安二中決定對學(xué)校校園內(nèi)的環(huán)校跑道進(jìn)行改造,需要鋪設(shè)一條長為4200米的道路,根據(jù)招標(biāo)文件得知甲工程隊比乙工程隊每天能多鋪設(shè)20米.甲工程隊鋪設(shè)350米所用的天數(shù)與乙工程隊鋪設(shè)250米所用的天數(shù)相同.
甲、乙工程隊每天各能鋪設(shè)多少米?
施工時,需付給甲隊每天施工費(fèi)3000元,需付給乙隊每天施工費(fèi)2500元,單獨(dú)承包給甲隊或乙隊,或者兩隊一起施工都可以,但為了節(jié)約經(jīng)費(fèi),方便全校師生出行,聰明的同學(xué)們你認(rèn)為三種承包方式怎樣承包最合理?
【答案】(1)甲工程隊每天能鋪設(shè)70米;乙工程隊每天能鋪設(shè)50米;(2)為了方便公民出行,節(jié)約經(jīng)費(fèi),應(yīng)該選擇甲乙一起施工比較合理.
【解析】
(1)設(shè)乙工程隊每天能鋪設(shè)x米,則甲工程隊每天能鋪設(shè)(x+20)米,根據(jù)甲工程隊鋪設(shè)350米所用的天數(shù)與乙工程隊鋪設(shè)250米所用的天數(shù)相同,列方程求解;
(2)分別計算出三種方案需要的天數(shù),及所需要的經(jīng)費(fèi),綜合判斷即可.
解:設(shè)乙工程隊每天能鋪設(shè)x米,則甲工程隊每天能鋪設(shè)米,
依題意,得:,
解得:,
經(jīng)檢驗(yàn),是原方程的解,且符合題意.
米.
答:甲工程隊每天能鋪設(shè)70米;乙工程隊每天能鋪設(shè)50米.
甲隊單獨(dú)施工需要:天,需要經(jīng)費(fèi)180000元;
乙隊單獨(dú)施工需要:天,需要經(jīng)費(fèi):210000元;
甲乙一起施工需要:天,需要經(jīng)費(fèi)元.
答:為了方便公民出行,節(jié)約經(jīng)費(fèi),應(yīng)該選擇甲乙一起施工比較合理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊的綠化費(fèi)用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費(fèi)用不超過8萬元,至少應(yīng)安排甲隊工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一條雙向公路隧道,其橫斷面由拋物線和矩形ABCD的三邊DA、AB、BC圍成,隧道最大高度為4.9米,AB=10米,BC=2.4米,若有一輛高為4米、寬為2米的集裝箱的汽車要通過隧道,為了使箱頂不碰到隧道頂部,又不違反交通規(guī)則(汽車應(yīng)靠道路右側(cè)行駛,不能超過道路中線),汽車的右側(cè)必須離開隧道右壁幾米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線與BC的延長線交于點(diǎn)E,與DC交于點(diǎn)F.
(1)求證:CD=BE;
(2)若AB=4,點(diǎn)F為DC的中點(diǎn),DG⊥AE,垂足為G,且DG=1,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,AE是∠BAC的角平分線.CD⊥AE,與AE的延長線交于D點(diǎn),與AB的延長線交于F點(diǎn)。求證CD=AE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AC=BC,∠C=120°,點(diǎn)D為AB邊的中點(diǎn),∠EDF=60°,DE、DF分別交AC、BC與E、F點(diǎn)。
(1)如圖,若EF∥AB,求證DE=DF
(2)如圖,若EF與AB不平行,則問題(1)的結(jié)論是否成立?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、B在雙曲線y=( x>0)上,BC與x軸交于點(diǎn)D.若點(diǎn)A的坐標(biāo)為(1,2),則點(diǎn)B的坐標(biāo)為( 。
A. (3,) B. (4,) C. (,) D. (5,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組在“用頻率估計概率”的試驗(yàn)中,統(tǒng)計了某種結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結(jié)果的試驗(yàn)最有可能的是( 。
A. 在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機(jī)摸出一個球是“白球”
B. 從一副撲克牌中任意抽取一張,這張牌是“紅色的”
C. 擲一枚質(zhì)地均勻的硬幣,落地時結(jié)果是“正面朝上”
D. 擲一個質(zhì)地均勻的正六面體骰子,落地時面朝上的點(diǎn)數(shù)是6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com