【題目】在平面直角坐標系xOy中,已知點P(﹣2,1)關(guān)于y軸的對稱點P′,點T(t,0)是x軸上的一個動點,當(dāng)△P′TO是等腰三角形時,t的值是_____.
【答案】或4或或.
【解析】
點P′是已知點P(﹣2,1)關(guān)于y軸的對稱,則點P′的坐標是(2,1),則OP′=,OP′是等腰三角形的底邊或腰,應(yīng)分幾種情況討論.
由題可知,點P′的坐標是(2,1),則OP′==,
(1)當(dāng)OP′是等腰三角形的底邊時,點T就是OP′的垂直平分線與x軸的交點,根據(jù)三角形相似可得:OT=;
(2)當(dāng)OP′是等腰三角形的腰時,若點O是頂角頂點,則點T就是以點O為圓心,以OP′為半徑的圓與x軸的交點,則坐標是(4,0),則t的值是4,若點P′是頂角頂點,則點T就是以點P′為圓心,以OP′為半徑的圓與x軸的交點,則坐標是(,0)或(﹣,0),則t的值是或﹣.由(1)(2)可知t的值是或4或或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知,,點P為AB邊上的一個動點,點E、F分別是CA,CB邊的中點,過點P作于D,設(shè),圖中某條線段的長為y,如果表示y與x的函數(shù)關(guān)系的大致圖象如圖2所示,那么這條線段可能是
A. PDB. PEC. PCD. PF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解決問題:
如圖,半徑為4的外有一點P,且,點A在上,則PA的最大值和最小值分別是______和______.
如圖,扇形AOB的半徑為4,,P為弧AB上一點,分別在OA邊找點E,在OB邊上找一點F,使得周長的最小,請在圖中確定點E、F的位置并直接寫出周長的最小值;
拓展應(yīng)用
如圖,正方形ABCD的邊長為;E是CD上一點不與D、C重合,于F,P在BE上,且,M、N分別是AB、AC上動點,求周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,D為BC上一點,連接AD,過點B作BE垂直于CA的延長線于點E,BE與DA的延長線相交于點F.
(1)如圖1,若AB平分∠CBE,∠ADB=30°,AE=3,AC=7,求CD的長;
(2)如圖2,若AB=AC,∠ADB=45°,求證;BC=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】朗讀者自開播以來,以其厚重的文化底蘊和感人的人文情懷,感動了數(shù)以億計的觀眾,岳池縣某中學(xué)開展“朗讀”比賽活動,九年級、班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績滿分為100分如圖所示.
平均數(shù) | 中位數(shù) | 眾數(shù) | |
九班 | 85 | 85 | |
九班 | 80 |
根據(jù)圖示填寫表格;
結(jié)合兩班復(fù)賽成績的平均數(shù)和中位數(shù),分析哪個班級的復(fù)賽成績較好;
如果規(guī)定成績較穩(wěn)定班級勝出,你認為哪個班級能勝出?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當(dāng)天的批發(fā)價和零售價如表所示:
品名 | 獼猴桃 | 芒果 |
批發(fā)價元千克 | 20 | 40 |
零售價元千克 | 26 | 50 |
他購進的獼猴桃和芒果各多少千克?
如果獼猴桃和芒果全部賣完,他能賺多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD和正方形DEFG中,點G在CD上,DE=2,將正方形DEFG繞點D順時針旋轉(zhuǎn)60°,得到正方形DE'F'G',此時點G'在AC上,連接CE',則CE'+CG'=______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com