【題目】如圖,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分別交AB,BC,BD于E,F(xiàn),G,連接DE,DF.

(1)求證:DE=DF;

2)若∠ABC=30°C=45°,DE=4,求CF的長.

【答案】(1)證明見解析;

(2)CF的長為2+

【解析】試題分析:(1)本題利用垂直平分線的性質(zhì),角平分線的性質(zhì)得出結(jié)論,證明四邊形BFDE為菱形即可;(2)本題要根據(jù)菱形得出三角形DFC的角的度數(shù),作垂直構造特殊的三角形解決問題即可.

試題解析:(1)證明:∵EF垂直平分BD,

∴EB=ED,F(xiàn)B=FD.

∵BD平分∠ABC交AC于D,

∴∠ABD=∠CBD.

∵∠ABD+∠BEG=90°,∠CBD+∠BFG=90°,

∴∠BEG=∠BFG.

∴BE=BF.

∴四邊形BFDE是菱形.

∴DE=DF.

(2)解:過D作DH⊥CF于H.

∵四邊形BFDE是菱形,

∴DF∥AB,DE=DF=4.

在Rt△DFH中,∠DFC=∠ABC=30°,

∴DH=2.

∴FH=

在Rt△CDH中,∠C=45°,

∴DH=HC=2.

∴CF=2+

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作:

1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為   ;

2)連接AD、CD,則⊙D的半徑為   ;扇形DAC的圓心角度數(shù)為   ;

3)若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的底面半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)問題:如圖1,在四邊形ABCD中,點PAB上一點,∠DPC=A=B=90°.

求證:AD·BC=AP·BP

(2)探究:如圖2,在四邊形ABCD中,點PAB上一點,當∠DPC=A=B=θ時,上述結(jié)論是否依然成立?說明理由.

(3)應用:請利用(1)(2)獲得的經(jīng)驗解決問題:

如圖3,在ABD中,AB=12AD=BD=10.P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=A.設點P的運動時間為t(秒),當以D為圓心,以DC為半徑的圓與AB相切,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,濕地景區(qū)岸邊有三個觀景臺、、.已知米,米,點位于點的南偏西方向,點位于點的南偏東方向.

1)求的面積;

2)景區(qū)規(guī)劃在線段的中點處修建一個湖心亭,并修建觀景棧道.試求間的距離.(結(jié)果精確到0.1米)

(參考數(shù)據(jù):,,,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線ly=2x+2m(m>0)x,y軸分別交于A.B兩點,點M是雙曲線(x>0)上一點,分別連接MA、MB.

(1)如圖,當點A(0)時,恰好AB=AM∠MAB=90°,試求M的坐標;

(2)如圖,當m=3時,直線l與雙曲線交于C.D兩點,分別連接OCOD,試求△OCD面積;

(3)如圖,在雙曲線上是否存在點M,使得以AB為直角邊的△MAB△AOB相似?如果存在,請直接寫出點M的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,畫一條平行于BC的直線,使其將△ABC分成兩部分,且所分三角形與梯形面積比為1:3;

(2)如圖②,△ABCAB=4,AC=3,BC=6,D是△ABCAC邊上的點,AD=2,過點D畫一條直線l將△ABC分成兩部分,l與△ABC另一邊的交點為點P,使其所分的一個三角形與△ABC相似,并求出DP的長;

(3)如圖③所示,在等腰△ABC中,CA=CB=10,AB=12.在△ABC中放入正方形DEMN和正方形EFPH,使得DE.EF在邊AB上,點P.N分別在邊CB.CA上,若較大正方形的邊長為a,請用含a的代數(shù)式表示較小正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AB=" 3" cmBC=" 4" cm.點P從點A出發(fā),以1 cms的速度沿AB運動;同時,點Q從點B出發(fā),以2 cms的速度沿BC運動.當點Q到達點C時,PQ兩點同時停止運動.

1)試寫出△PBQ的面積 S cm2)與動點運動時間 t s)之間的函數(shù)表達式;

2)運動時間 t 為何值時,△PBQ的面積最大?最大值是多少?.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠C90°,AC16cmBC8cm,一動點P從點C出發(fā)沿著CB方向以2cm/s的速度運動,另一動點QA出發(fā)沿著AC邊以4cm/s的速度運動,P、Q兩點同時出發(fā),運動時間為ts).

1)若PCQ的面積是ABC面積的,求t的值?

2PCQ的面積能否與四邊形ABPQ面積相等?若能,求出t的值;若不能,說明理由.

查看答案和解析>>

同步練習冊答案