已知:四邊形ABCD是矩形,AC與BD是對(duì)角線.
(1)試說(shuō)明:AC=BD;
(2)設(shè)AC與BD的交點(diǎn)為O,AB=4cm,OA=3cm.求BD與AD的長(zhǎng).
分析:(1)根據(jù)矩形的性質(zhì)得出∠ABC=∠DCB=90°,AB=DC,根據(jù)SAS證出△ABC≌△DCB即可;
(2)求出AC長(zhǎng)根據(jù)勾股定理求出BC,即可得出AD.
解答:解:(1)∵四邊形ABCD是矩形,
∴∠ABC=∠DCB=90°,AB=DC,
∵在△ABC和△DCB中,
AB=DC
∠ABC=∠DCB
BC=CB

∴△ABC≌△DCB(SAS),
∴AC=BD;

(2)∵四邊形ABCD是矩形,OA=3cm
∴∠ABC=90°,AC=2AO=6cm,BD=AC=6cm,AD=BC
在Rt△ABC中,由勾股定理得:BC=
AC2-AB2
=
62-42
=2
5
(cm),
即AD=2
5
cm.
答:BD=6cm,AD=2
5
cm.
點(diǎn)評(píng):本題考查了矩形的性質(zhì),全等三角形的性質(zhì)和判定,勾股定理等知識(shí)點(diǎn)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們給出如下定義:如果四邊形中一對(duì)頂點(diǎn)到另一對(duì)頂點(diǎn)所連對(duì)角線的距離相等,則把這對(duì)頂點(diǎn)叫做這個(gè)四邊形的一對(duì)等高點(diǎn).例如:如圖1,平行四邊形ABCD中,可證點(diǎn)A、C到BD的距離相等,所以點(diǎn)A、C是平行四邊形ABCD的一對(duì)等高點(diǎn),同理可知點(diǎn)B、D也是平行四邊形ABCD的一對(duì)等高點(diǎn).
(1)如圖2,已知平行四邊形ABCD,請(qǐng)你在圖2中畫(huà)出一個(gè)只有一對(duì)等高點(diǎn)的四邊形ABCE(要求:畫(huà)出必要的輔助線);
(2)已知P是四邊形ABCD對(duì)角線BD上任意一點(diǎn)(不與B、D點(diǎn)重合),請(qǐng)分別探究圖3、圖4中S1,S2,S3,S4四者之間的等量關(guān)系(S1,S2,S3,S4分別表示△ABP,△CBP,△CDP,△ADP的面積):
①如圖3,當(dāng)四邊形ABCD只有一對(duì)等高點(diǎn)A、C時(shí),你得到的一個(gè)結(jié)論是
 
;
②如圖4,當(dāng)四邊形ABCD沒(méi)有等高點(diǎn)時(shí),你得到的一個(gè)結(jié)論是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知,四邊形ABCD是菱形,AC=6,BD=8,求AB的長(zhǎng)和菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、如圖:在平行四邊形ABCD中,∠B=30°,AE⊥BC于點(diǎn)E,AF⊥DC的延長(zhǎng)線于點(diǎn)F,已知平行四邊形ABCD的周長(zhǎng)為40cm,且AE:AF=2:3.求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知在四邊形ABCD中,AC與BD相交于點(diǎn)O,AB⊥AC,CD⊥BD.
(1)求證:△AOD∽△BOC;
(2)若sin∠ABO=
23
,S△AOD=4,求S△BOC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平行四邊形ABCD,E是邊AB的中點(diǎn),聯(lián)結(jié)AC、DE交于點(diǎn)O.記向量
AB
=
a
,
AD
=
b
,則向量
OE
=
1
6
a
-
1
3
b
1
6
a
-
1
3
b
(用向量
a
b
表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案