【題目】如圖,在平面直角坐標系中,拋物線與軸交于、兩點(點在點左側),經(jīng)過點的直線:與軸交于點,與拋物線的另一個交點為,且.
(1)直接寫出點的坐標,并用含的式子表示直線的函數(shù)表達式(其中、用含的式子表示).
(2)點為直線下方拋物線上一點,當的面積的最大值為時,求拋物線的函數(shù)表達式;
(3)設點是拋物線對稱軸上的一點,點在拋物線上,以點、、、為頂點的四邊形能否為矩形?若能,求出點的坐標;若不能,請說明理由.
【答案】(1);(2);(3)或.
【解析】
(1)令二次函數(shù)解析式為0,解一元二次方程即可得A、B的坐標,作DF⊥x軸于點F,根據(jù)平行線分線段定理可以求出點D的坐標,然后代入即可求一次函數(shù)解析式;
(2)點E作EH∥y軸,交直線l于點H,設出點E的坐標,則點H的坐標也可表示,HE即可求出,根據(jù)一次函數(shù)和二次函數(shù)的交點可求出點D的橫坐標,然后再根據(jù)已知條件三角形ADE的面積最大時求出a的值,二次函數(shù)解析式即可求出;
(3)根據(jù)矩形的性質(zhì)分兩種情況討論:①若AD為矩形的邊,且點Q在對稱軸左側時②若AD為矩形的邊,且點Q在對稱軸右側時,求出即可.
解:(1)令,則,
解得,
∵點在點的左側,∴,
如圖1,作軸于,
∵,
∴,
∵,
∴,
∴,
∴,
∴點的橫坐標為4,
代入得,,
∴,
把、坐標代入得,
解得,
∴直線的函數(shù)表達式為.
(2)如圖2,過點作軸,交直線于點,
設,則.
∴,
由得或,
即點的橫坐標為4,
∴ .
∴的面積的最大值為,
∴,
解得:.
∴拋物線的函數(shù)表達式為.
(3)已知,.
∵,
∴拋物線的對稱軸為,
設,
①若為矩形的邊,且點在對稱軸左側時,則,且,
則,
,則,
∵四邊形為矩形,
∴,
∴,
∴ ,
即,
∵,
∴,
∴,
②若為矩形的邊,且點在對稱軸右側時,則,且,
則,
此時點與點重合,不符合題意,舍去;
③若是矩形的一條對角線,則與互相平分且相等.
,,
∴,
∴.
∴
∴.
∵四邊形為矩形,
∴
∴
∴
即,
∵,
∴
∴
綜上所述,以點、、、為頂點的四邊形能成為矩形,點的坐標為或.
科目:初中數(shù)學 來源: 題型:
【題目】Windows2000下有一個有趣的“掃雷”游戲.如圖是“掃雷”游戲的一部分,說明:圖中數(shù)字2表示在以該數(shù)字為中心的周邊8個方格中有2個地雷,小旗表示該方格已被探明有地雷.現(xiàn)在還剩下、、三個方格未被探明,其他地方為安全區(qū)(包括有數(shù)字的方格),則、、三個方格中有地雷概率最大的方格是( )
2 | 2 | ||
A. A B. B C. C D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式:
第1個等式:
第2個等式:
第3等式:
第4個等式:
請解答下列問題:
(1)按以上規(guī)律寫出第5個等式:a5= = .
(2)用含n的式子表示第n個等式:an= = (n為正整數(shù)).
(3)求a1+a2+a3+a4+…+a2018的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大。
其中會隨點P的移動而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2-12ax+36a-5的圖象在4<x<5這一段位于x軸下方,在8<x<9這一段位于x軸上方,則a的值為___________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式;
(2)當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?
(3)為穩(wěn)定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從熱氣球C上測得兩建筑物A、B底部的俯角分別為30°和60度.如果這時氣球的高度CD為90米.且點A、D、B在同一直線上,求建筑物A、B間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某消防隊在一居民樓前進行演習,消防員利用云梯成功救出點B處的求救者后,又發(fā)現(xiàn)點B正上方點C處還有一名求救者.在消防車上點A處測得點B和點C的仰角分別是45°和65°,點A距地面2.5米,點B距地面10.5米.為救出點C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線 軸于點 ,點是直線 上的動點.直線 交 于點 ,過點 作直線 垂直于 ,垂足為 ,過點 , 的直線 交 于點 E,當直線 ,,能圍成三角形時,設該三角形面積為 ,當直線 ,,能圍成三角形時,設該三角形面積為 .
(1)若點 在線段 上,且 ,則 點坐標為_________;
(2)若點 在直線上,且,則的度數(shù)為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com