【題目】在中,,,,根據(jù)下列條件不能判斷是直角三角形的是( )
A.,B.
C.,,D.
【答案】B
【解析】
如果已知角之間的關(guān)系,只要求得有一個(gè)角是90°即可判斷它所在的三角形是直角三角形,據(jù)此可判斷A、B;如果已知邊之間的關(guān)系,可借助勾股定理的逆定理判斷三角形是否為直角三角形據(jù)此可判斷C、D.
解:A、∵∠B=50°,∠C=40°,
∴∠A=180°-50°-40°=90°,
∴△ABC是直角三角形;
B. ∵,
∴設(shè)∠A=x,則∠B=∠C=2x
則有x+2x+2x=180°,
解得x=36°,2x=72°,
∴∠A=36°,∠B=∠C=72°,△ABC不是直角三角形;
C. ∵,,,
∴,,,
∴,
∴△ABC是直角三角形;
D. ∵,
∴設(shè),
∴,△ABC是直角三角形;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)反比例函數(shù)由構(gòu)造一個(gè)新函數(shù)其圖象如圖所示.(因其圖象似雙鉤,我們稱之為“雙鉤函數(shù)” ).給出下列幾個(gè)命題:
①該函數(shù)的圖象是中心對(duì)稱圖形;
②當(dāng)時(shí),該函數(shù)在時(shí)取得最大值-2;
③的值不可能為1;
④在每個(gè)象限內(nèi),函數(shù)值隨自變量的增大而增大.
其中正確的命題是 .(請(qǐng)寫出所有正確的命題的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小強(qiáng)的錢包內(nèi)有10元錢、20元錢和50元錢的紙幣各1張.
(1)若從中隨機(jī)取出1張紙幣,求取出紙幣的金額是20元的概率;
(2)若從中隨機(jī)取出2張紙幣,求取出紙幣的總額可購(gòu)買一件51元的商品的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn):若每箱以50元的價(jià)格出售,平均每天銷售80箱,價(jià)格每提高1元,平均每天少銷售2箱.
⑴.求平均每天銷售量(箱)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式;
⑵.求該批發(fā)商平均每天的銷售利潤(rùn)(元)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式;
⑶.當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣1,5),點(diǎn)B的坐標(biāo)為(﹣3,1).
(1)在平面直角坐標(biāo)系中作線段AB關(guān)于y軸對(duì)稱的線段A1B1(A與A1,B與B1對(duì)應(yīng));
(2)求△AA1B1的面積;
(3)在y軸上存在一點(diǎn)P,使PA+PB的值最小,則點(diǎn)P的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,于點(diǎn),是的中點(diǎn),連結(jié)交于點(diǎn).
(1)與全等嗎?請(qǐng)說(shuō)明理由.
(2)若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作與證明:如圖1,把一個(gè)含45°角的直角三角板ECF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AF.取AF中點(diǎn)M,EF的中點(diǎn)N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請(qǐng)判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.
結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;
結(jié)論2:DM、MN的位置關(guān)系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個(gè)結(jié)論還成立嗎?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:①aa2=_____;
②=_____;
③a0=_____(a≠0);
④=_____;
⑤﹣6a÷3a=_____;
⑥=_____;
⑦=_____;
⑧=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=12,BC=8,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com