【題目】在二次函數(shù)的學(xué)習(xí)中,教材有如下內(nèi)容:

1 函數(shù)圖象求一元二次方程的近似解(精確到0.1).

解:設(shè)有二次函數(shù),列表并作出它的圖象(圖1).

0

1

2

3

4

5

觀察拋物線和軸交點(diǎn)的位置,估計(jì)出交點(diǎn)的橫坐標(biāo)分別約為4.8,所以得出方程精確到0.1的近似解為,,利用二次函數(shù)的圖象求出一元二次方程的解的方法稱為圖象法,這種方法常用來求方程的近似解.

小聰和小明通過例題的學(xué)習(xí),體會(huì)到利用函數(shù)圖象可以求出方程的近似解.于是他們嘗試?yán)脠D象法探宄方程的近似解,做法如下:

小聰?shù)淖龇ǎ毫詈瘮?shù),列表并畫出函數(shù)的圖象,借助圖象得到方程的近似解.

小明的做法:因?yàn)?/span>,所以先將方程的兩邊同時(shí)除以,變形得到方程,再令函數(shù),列表并畫出這兩個(gè)函數(shù)的圖象,借助圖象得到方程的近似解.

請(qǐng)你選擇小聰或小明的做法,求出方程的近似解(精確到0.1).

【答案】選擇小明的作法,,,

【解析】

根據(jù)小明的作法,將方程變形得到方程x22x,令函數(shù),畫出函數(shù)的圖象,借助圖象得到方程的近似解.

選擇小明的作法,

列表并作出函數(shù)的圖象:

x

-4

-3

-2

-1

0

1

2

3

4

8

3

0

-1

0

3

8

1

-1

-

-

-

根據(jù)函數(shù)圖象,得近似解為,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖像如圖所示,則下列結(jié)論正確的個(gè)數(shù)有(

c0;②b24ac0;③ abc0;④當(dāng)x>-1時(shí),yx的增大而減。

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,∠B=90o,以AB上的一點(diǎn)O為圓心,以OA為半徑的圓交AC于點(diǎn)D,交AB于點(diǎn)E

1)求證:AC·AD=AB·AE;

2)如果BD⊙O的切線,D是切點(diǎn),EOB的中點(diǎn),當(dāng)BC=2時(shí),求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A30°,AB6,將RtABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使斜邊ABB點(diǎn),則線段CA掃過的面積為_____.(結(jié)果保留根號(hào)和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們研究過的圖形中,圓的任何一對(duì)平行切線的距離總是相等的,所以圓是等寬曲線”.除了圓以外,還有一些幾何圖形也是等寬曲線,如勒洛三角形(如圖),它是分別以等邊三角形的每個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑,在另兩個(gè)頂點(diǎn)間畫一段圓弧,三段圓弧圍成的曲邊三角形. 是等寬的勒洛三角形和圓形滾木的截面圖.

有如下四個(gè)結(jié)論:

①勒洛三角形是中心對(duì)稱圖形

②圖中,點(diǎn)上任意一點(diǎn)的距離都相等

③圖中,勒洛三角形的周長(zhǎng)與圓的周長(zhǎng)相等

④使用截面是勒洛三角形的滾木來搬運(yùn)東西,會(huì)發(fā)生上下抖動(dòng)

上述結(jié)論中,所有正確結(jié)論的序號(hào)是( )

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形,,連接,.若繞點(diǎn)旋轉(zhuǎn),當(dāng)最大時(shí),__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知C為線段AB中點(diǎn),∠ACMαQ為線段BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),點(diǎn)P在射線CM上,連接PA,PQ,記BQkCP

1)若α60°,k1,

①如圖1,當(dāng)QBC中點(diǎn)時(shí),求∠PAC的度數(shù);

②直接寫出PAPQ的數(shù)量關(guān)系;

2)如圖2,當(dāng)α45°時(shí).探究是否存在常數(shù)k,使得②中的結(jié)論仍成立?若存在,寫出k的值并證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB是非直徑弦,弦CDAB,

1)當(dāng)CD經(jīng)過圓心時(shí)(如圖①),∠AOC+DOB=__________;

2)當(dāng)CD不經(jīng)過圓心時(shí)(如圖②),∠AOC+DOB的度數(shù)與(1)的情況相同嗎?試說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RABC中,∠ACB90°,AC6,BC8EAC上一點(diǎn),且AE,AD平分∠BACBCD.若PAD上的動(dòng)點(diǎn),則PC+PE的最小值等于( 。

A.B.C.4D.

查看答案和解析>>

同步練習(xí)冊(cè)答案