【題目】在二次函數(shù)的學(xué)習(xí)中,教材有如下內(nèi)容:
例1 函數(shù)圖象求一元二次方程的近似解(精確到0.1).
解:設(shè)有二次函數(shù),列表并作出它的圖象(圖1).
… | 0 | 1 | 2 | 3 | 4 | 5 | … | ||
… | … |
觀察拋物線和軸交點(diǎn)的位置,估計(jì)出交點(diǎn)的橫坐標(biāo)分別約為和4.8,所以得出方程精確到0.1的近似解為,,利用二次函數(shù)的圖象求出一元二次方程的解的方法稱為圖象法,這種方法常用來求方程的近似解.
小聰和小明通過例題的學(xué)習(xí),體會(huì)到利用函數(shù)圖象可以求出方程的近似解.于是他們嘗試?yán)脠D象法探宄方程的近似解,做法如下:
小聰?shù)淖龇ǎ毫詈瘮?shù),列表并畫出函數(shù)的圖象,借助圖象得到方程的近似解.
小明的做法:因?yàn)?/span>,所以先將方程的兩邊同時(shí)除以,變形得到方程,再令函數(shù)和,列表并畫出這兩個(gè)函數(shù)的圖象,借助圖象得到方程的近似解.
請(qǐng)你選擇小聰或小明的做法,求出方程的近似解(精確到0.1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖像如圖所示,則下列結(jié)論正確的個(gè)數(shù)有( )
①c>0;②b2-4ac<0;③ a-b+c>0;④當(dāng)x>-1時(shí),y隨x的增大而減。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠B=90o,以AB上的一點(diǎn)O為圓心,以OA為半徑的圓交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:AC·AD=AB·AE;
(2)如果BD是⊙O的切線,D是切點(diǎn),E是OB的中點(diǎn),當(dāng)BC=2時(shí),求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=6,將Rt△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使斜邊A′B′過B點(diǎn),則線段CA掃過的面積為_____.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們研究過的圖形中,圓的任何一對(duì)平行切線的距離總是相等的,所以圓是“等寬曲線”.除了圓以外,還有一些幾何圖形也是“等寬曲線”,如勒洛三角形(如圖),它是分別以等邊三角形的每個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑,在另兩個(gè)頂點(diǎn)間畫一段圓弧,三段圓弧圍成的曲邊三角形. 圖是等寬的勒洛三角形和圓形滾木的截面圖.
圖 圖
有如下四個(gè)結(jié)論:
①勒洛三角形是中心對(duì)稱圖形
②圖中,點(diǎn)到上任意一點(diǎn)的距離都相等
③圖中,勒洛三角形的周長(zhǎng)與圓的周長(zhǎng)相等
④使用截面是勒洛三角形的滾木來搬運(yùn)東西,會(huì)發(fā)生上下抖動(dòng)
上述結(jié)論中,所有正確結(jié)論的序號(hào)是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形和,,,連接,.若繞點(diǎn)旋轉(zhuǎn),當(dāng)最大時(shí),__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知C為線段AB中點(diǎn),∠ACM=α.Q為線段BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),點(diǎn)P在射線CM上,連接PA,PQ,記BQ=kCP.
(1)若α=60°,k=1,
①如圖1,當(dāng)Q為BC中點(diǎn)時(shí),求∠PAC的度數(shù);
②直接寫出PA、PQ的數(shù)量關(guān)系;
(2)如圖2,當(dāng)α=45°時(shí).探究是否存在常數(shù)k,使得②中的結(jié)論仍成立?若存在,寫出k的值并證明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,AB是非直徑弦,弦CD⊥AB,
(1)當(dāng)CD經(jīng)過圓心時(shí)(如圖①),∠AOC+∠DOB=__________;
(2)當(dāng)CD不經(jīng)過圓心時(shí)(如圖②),∠AOC+∠DOB的度數(shù)與(1)的情況相同嗎?試說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在R△ABC中,∠ACB=90°,AC=6,BC=8,E為AC上一點(diǎn),且AE=,AD平分∠BAC交BC于D.若P是AD上的動(dòng)點(diǎn),則PC+PE的最小值等于( 。
A.B.C.4D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com