相傳古印度一座梵塔圣殿中,鑄有一片巨大的黃銅板,之上樹立了三米高的寶石柱,其中一根寶石柱上插有中心有孔的64枚大小兩兩相異的一寸厚的金盤,小盤壓著較大的盤子,如圖,把這些金盤全部一個(gè)一個(gè)地從1柱移到3柱上去,移動過程不許以大盤壓小盤,不得把盤子放到柱子之外。移動之日,喜馬拉雅山將變成一座金山。

設(shè)h(n) 是把n個(gè)盤子從1柱移到3柱過程中移動盤子知最少次數(shù)

n=1時(shí),h(1)=1

n=2時(shí),小盤    2柱,大盤    3柱,小柱從2柱    3柱,完成。即h(2)=3

n=3時(shí),小盤    3柱,中盤    2柱,小柱從3柱    2柱。 [即用h(2)

方法把中、小兩盤移到2柱,大盤3柱;再用h(2)種方法把中、小兩盤從2柱3柱,完成

我們沒有時(shí)間去移64個(gè)盤子,但你可由以上移動過程的規(guī)律,計(jì)算n=6時(shí), h(6)=

A.11        B.31       C.63     D.127  

 

【答案】

C

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、相傳古印度一座梵塔圣殿中,鑄有一片巨大的黃銅板,之上樹立了三米高的寶石柱,其中一根寶石柱上插有中心有孔的64枚大小兩兩相異的一寸厚的金盤,小盤壓著較大的盤子,如圖,把這些金盤全部一個(gè)一個(gè)地從1柱移到3柱上去,移動過程不許以大盤壓小盤,不得把盤子放到柱子之外.移動之日,喜馬拉雅山將變成一座金山.
設(shè)h(n)是把n個(gè)盤子從1柱移到3柱過程中移動盤子之最少次數(shù)
n=1時(shí),h(1)=1;
n=2時(shí),小盤→2柱,大盤→3柱,小柱從2柱→3柱,完成.即h(2)=3;
n=3時(shí),小盤→3柱,中盤→2柱,小柱從3柱→2柱.[即用h(2)種方法把中、小兩盤移到2柱,大盤3柱;再用h(2)種方法把中、小兩盤從2柱3柱,完成;
我們沒有時(shí)間去移64個(gè)盤子,但你可由以上移動過程的規(guī)律,計(jì)算n=6時(shí),h(6)=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年新思源教育學(xué)院中考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

相傳古印度一座梵塔圣殿中,鑄有一片巨大的黃銅板,之上樹立了三米高的寶石柱,其中一根寶石柱上插有中心有孔的64枚大小兩兩相異的一寸厚的金盤,小盤壓著較大的盤子,如圖,把這些金盤全部一個(gè)一個(gè)地從1柱移到3柱上去,移動過程不許以大盤壓小盤,不得把盤子放到柱子之外.移動之日,喜馬拉雅山將變成一座金山.
設(shè)h(n)是把n個(gè)盤子從1柱移到3柱過程中移動盤子之最少次數(shù)
n=1時(shí),h(1)=1;
n=2時(shí),小盤→2柱,大盤→3柱,小盤從2柱→3柱,完成.即h(2)=3;
n=3時(shí),小盤→3柱,中盤→2柱,小盤從3柱→2柱.[即用h(2)種方法把中、小兩盤移到2柱,大盤3柱;再用h(2)種方法把中、小兩盤從2柱3柱,完成;
我們沒有時(shí)間去移64個(gè)盤子,但你可由以上移動過程的規(guī)律,計(jì)算n=6時(shí),h(6)=( )

A.11
B.31
C.63
D.127

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣西百色市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

相傳古印度一座梵塔圣殿中,鑄有一片巨大的黃銅板,之上樹立了三米高的寶石柱,其中一根寶石柱上插有中心有孔的64枚大小兩兩相異的一寸厚的金盤,小盤壓著較大的盤子,如圖,把這些金盤全部一個(gè)一個(gè)地從1柱移到3柱上去,移動過程不許以大盤壓小盤,不得把盤子放到柱子之外.移動之日,喜馬拉雅山將變成一座金山.
設(shè)h(n)是把n個(gè)盤子從1柱移到3柱過程中移動盤子之最少次數(shù)
n=1時(shí),h(1)=1;
n=2時(shí),小盤→2柱,大盤→3柱,小盤從2柱→3柱,完成.即h(2)=3;
n=3時(shí),小盤→3柱,中盤→2柱,小盤從3柱→2柱.[即用h(2)種方法把中、小兩盤移到2柱,大盤3柱;再用h(2)種方法把中、小兩盤從2柱3柱,完成;
我們沒有時(shí)間去移64個(gè)盤子,但你可由以上移動過程的規(guī)律,計(jì)算n=6時(shí),h(6)=( )

A.11
B.31
C.63
D.127

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

相傳古印度一座梵塔圣殿中,鑄有一片巨大的黃銅板,之上樹立了三米高的寶石柱,其中一根寶石柱上插有中心有孔的64枚大小兩兩相異的一寸厚的金盤,小盤壓著較大的盤子,如圖,把這些金盤全部一個(gè)一個(gè)地從1柱移到3柱上去,移動過程不許以大盤壓小盤,不得把盤子放到柱子之外。移動之日,喜馬拉雅山將變成一座金山。

設(shè)h(n) 是把n個(gè)盤子從1柱移到3柱過程中移動盤子知最少次數(shù)
n=1時(shí),h(1)=1
n=2時(shí),小盤    2柱,大盤    3柱,小柱從2柱    3柱,完成。即h(2)=3
n=3時(shí),小盤    3柱,中盤    2柱,小柱從3柱    2柱。 [即用h(2)
方法把中、小兩盤移到2柱,大盤3柱;再用h(2)種方法把中、小兩盤從2柱3柱,完成
我們沒有時(shí)間去移64個(gè)盤子,但你可由以上移動過程的規(guī)律,計(jì)算n=6時(shí), h(6)=
A.11B.31C.63D.127

查看答案和解析>>

同步練習(xí)冊答案