【題目】下列有四個結(jié)論:①若,則;

②若,,則的值為;

③若的運算結(jié)果中不含項,則;

④若,,則可表示為

其中正確的是(填序號)是:______

【答案】③④

【解析】

根據(jù)多項式乘法的法則,冪的乘方和積的乘方,同底數(shù)冪的除法,零指數(shù)進行計算即可得到結(jié)論.

解:①若(1-xx+1=1,則x可以為-1,此時20=1,故①選項錯誤;

②∵(a-b2=a2+b2-2ab=3-2ab=1,

ab=1

∴(a+b2=a-b2+4ab=1+4=5,

a+b=±

∴(2-a)(2-b=4-2a+b+ab=5±2,故②選項錯誤;

③∵(x+1)(x2-ax+1=x3-1-ax2-a-1x+1,

∵(x+1)(x2-ax+1)的運算結(jié)果中不含x項,

a-1=0,

a=1,故③選項正確;

④∵4x=a,8y=b

a=22x,b=23y,

,故④選項正確.

故答案為:③④.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD由四個相同的大長方形,四個相同的小長形以及一個小正方形組成,其中四個大長方形的長和寬分別是小長方形長和寬的2倍,若中間小正方形的面積為1,則大正方形ABCD的面積是(

A.36B.25C.20D.16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,的垂直平分線上一點,軸上一點且.

1)若,,求點的坐標;

2)在(1)的條件下,求證:;

3)如圖2,已知,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線交于點O,以AD為邊向外作RtADE,AED=90°,連接OE,DE=6,OE=8,則另一直角邊AE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B90°,CD為∠ACB的角平分線,在AC邊上取點E,使DEDB,且∠AED90°.若∠Aα,∠ACBβ,則( 。

A.AED180°﹣αβB.AED180°﹣αβ

C.AED90°﹣α+βD.AED90°+α+β

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】荊州市濱江公園旁的萬壽寶塔始建于明嘉靖年間,周邊風景秀麗.現(xiàn)在塔底低于地面約7米,某校學生測得古塔的整體高度約為40米.其測量塔頂相對地面高度的過程如下:先在地面A處測得塔頂?shù)难鼋菫?/span>30°,再向古塔方向行進a米后到達B處,在B處測得塔頂?shù)难鼋菫?/span>45°(如圖所示),那么a的值約為_____米(≈1.73,結(jié)果精確到0.1).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在△ABC中,∠A90°,PBC邊上的一點,P1,P2是點P關(guān)于ABAC的對稱點,連結(jié)P1P2,分別交ABAC于點D、E

1)若∠A52°,求∠DPE的度數(shù);

2)如圖2,在△ABC中,若∠BAC90°,用三角板作出點P關(guān)于AB、AC的對稱點P1、P2,(不寫作法,保留作圖痕跡),試判斷點P1,P2與點A是否在同一直線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:在平面直角坐標系中,若兩點P、Q的坐標分別是P(x1,y1)、

Q(x2,y2),則P、Q這兩點間的距離為|PQ|=.如P(1,2),Q(3,4),則|PQ|==2

對于某種幾何圖形給出如下定義:符合一定條件的動點形成的圖形,叫做符合這個條件的點的軌跡.如平面內(nèi)到線段兩個端點距離相等的點的軌跡是這條線段的垂直平分線.

解決問題:如圖,已知在平面直角坐標系xOy中,直線y=kx+y軸于點A,點A關(guān)于x軸的對稱點為點B,過點B作直線l平行于x軸.

(1)到點A的距離等于線段AB長度的點的軌跡是   

(2)若動點C(x,y)滿足到直線l的距離等于線段CA的長度,求動點C軌跡的函數(shù)表達式;

問題拓展:(3)若(2)中的動點C的軌跡與直線y=kx+交于E、F兩點,分別過E、F作直線l的垂線,垂足分別是M、N,求證:①EF是△AMN外接圓的切線;②為定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC=12cm,BC=9cm,點DAB的中點.

1)如果點P在線段BC上以3厘米/秒的速度由BC點運動,同時點Q在線段CA上由C點向A點運動.

①若點Q的運動速度與點P的運動速度相等,當經(jīng)過1秒時,BPDCQP是否全等,請判斷并說明理由;

②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使BPD≌△CPQ?

2)若點Q以②的運動速度從點C出發(fā),點P以原來運動速度從點B同時出發(fā),都逆時針沿ABC的三邊運動,求經(jīng)過多長時間,點P與點Q第一次在ABC的哪條邊上會相遇?

查看答案和解析>>

同步練習冊答案