【題目】隨著我市農(nóng)產(chǎn)品整體品牌形象“聊勝一籌!”的推出,現(xiàn)代農(nóng)業(yè)得到了更快發(fā)展.某農(nóng)場(chǎng)為擴(kuò)大生產(chǎn)建設(shè)了一批新型鋼管裝配式大棚,如圖1.線段AB,BD分別表示大棚的墻高和跨度,AC表示保溫板的長(zhǎng).已知墻高AB為2米,墻面與保溫板所成的角∠BAC=150°,在點(diǎn)D處測(cè)得A點(diǎn)、C點(diǎn)的仰角分別為9°,15.6°,如圖2.求保溫板AC的長(zhǎng)是多少米?(精確到0.1米)
(參考數(shù)據(jù):≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)
【答案】保溫板AC的長(zhǎng)是0.7米.
【解析】作CE⊥BD、AF⊥CE,設(shè)AF=x,可得AC=2x、CF=x,在Rt△ABD中由AB=EF=2知BD=,DE=BD-BE=-x,CE=EF+CF=2+x,根據(jù)tan∠CDE=列出關(guān)于x的方程,解之可得.
如圖所示,過點(diǎn)C作CE⊥BD于點(diǎn)E,過點(diǎn)A作AF⊥CE于點(diǎn)F,
則四邊形ABEF是矩形,
∴AB=EF、AF=BE,
設(shè)AF=x,
∵∠BAC=150°、∠BAF=90°,
∴∠CAF=60°,
則AC==2x、CF=AFtan∠CAF=x,
在Rt△ABD中,∵AB=EF=2,∠ADB=9°,
∴BD=,
則DE=BD-BE=-x,CE=EF+CF=2+x,
在Rt△CDE中,∵tan∠CDE=,
∴tan15.6°=,
解得:x≈0.7,
即保溫板AC的長(zhǎng)是0.7米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“迷你馬拉松”長(zhǎng)跑比賽,運(yùn)動(dòng)員從起點(diǎn)甲地出發(fā),跑到乙地后,沿原路線再跑回點(diǎn)甲地.設(shè)該運(yùn)動(dòng)員離開起點(diǎn)甲地的路程s(km)與跑步時(shí)間t(min)之間的函數(shù)關(guān)系如圖所示.已知該運(yùn)動(dòng)員從甲地跑到乙地時(shí)的平均速度是0.2 km/min,根據(jù)圖像提供的信息,解答下列問題:
(1)a= km;
(2)組委會(huì)在距離起點(diǎn)甲地3km處設(shè)立一個(gè)拍攝點(diǎn)P,該運(yùn)動(dòng)員從第一次過P點(diǎn)到第二次過P點(diǎn)所用的時(shí)間為24min.
①求AB所在直線的函數(shù)表達(dá)式;
②該運(yùn)動(dòng)員跑完全程用時(shí)多少min?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點(diǎn)P.
(1)求證:△ABE≌△CAD;
(2)若PQ=2,BE=5,求PE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面三行數(shù):
第一行:···
第二行:···
第三行 :···
探索它們之間的關(guān)系,尋求規(guī)律解答下列問題:
直接寫出第②行數(shù)的第個(gè)數(shù)是_____ ;
直接寫出第二行第個(gè)數(shù)是 ,第三行第個(gè)數(shù)是
取每行的第個(gè)數(shù),請(qǐng)判斷是否存在這樣的個(gè)數(shù)使它們的和為,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】知識(shí)準(zhǔn)備:數(shù)軸上兩點(diǎn)對(duì)應(yīng)的數(shù)分別為.則兩點(diǎn)之間的距離表示為:
問題探究:數(shù)軸上兩點(diǎn)對(duì)應(yīng)的數(shù)分別為且滿足
直接寫出:___、
在數(shù)軸上有一點(diǎn)對(duì)應(yīng)的數(shù)為,請(qǐng)問:當(dāng)點(diǎn)到兩點(diǎn)的距離和為時(shí),滿足什么條件?請(qǐng)利用數(shù)軸進(jìn)行說明(此時(shí)最小).
拓展:當(dāng)數(shù)軸上三點(diǎn)對(duì)應(yīng)的數(shù)分別為在數(shù)軸上有一點(diǎn)對(duì)應(yīng)的數(shù)為,當(dāng)滿足什么條件時(shí),的值最小?
應(yīng)用:國(guó)慶期間漢口江灘武漢關(guān)至長(zhǎng)江二橋之間是觀看“70周年國(guó)慶燈光秀”的理想?yún)^(qū)域,武漢關(guān)與長(zhǎng)江二橋相距約公里。在國(guó)慶期間,為了服務(wù)廣大市民,漢口江灘管理處在漢口江灘武漢關(guān)至長(zhǎng)江二橋之間每隔公里安排了便民服務(wù)小組(武漢關(guān)與長(zhǎng)江二橋不安排) ,還需要設(shè)置一個(gè)便民服務(wù)物資站,請(qǐng)問便民服務(wù)物資站應(yīng)該設(shè)置在什么地方,使它到各個(gè)便民服務(wù)小組的距離和最小,最小值是多少公里?便民服務(wù)物資站位置代表的數(shù)記作利用下圖直接給出結(jié)果:滿足的條件: 最小值為 公里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,DE∥AB分別交BC、AC于點(diǎn)D、E,過點(diǎn)E做EF⊥DE,交線段BC的延長(zhǎng)線于點(diǎn)F。
(1)求證:CE=CF;
(2)若BD=CE,AB=8,求線段DF的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),對(duì)角線AC上有一點(diǎn)P使PE+PD的和最小,這個(gè)最小值為( )
A. B. C. 3 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)角線長(zhǎng)分別為6和8的菱形ABCD如圖所示,點(diǎn)O為對(duì)角線的交點(diǎn),過點(diǎn)O折疊菱形,使B,B′兩點(diǎn)重合,MN是折痕.若B'M=1,則CN的長(zhǎng)為( )
A. 7 B. 6 C. 5 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=50°時(shí),求∠DEF的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com