精英家教網 > 初中數學 > 題目詳情

【題目】在我市雙城同創(chuàng)的工作中,某社區(qū)計劃對1200m2的區(qū)域進行綠化,經投標,由甲、乙兩個施工隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為300m2區(qū)域的綠化時,甲隊比乙隊少用3天.
(1)甲、乙兩施工隊每天分別能完成綠化的面積是多少?
(2)設先由甲隊施工x天,再由乙隊施工y天,剛好完成綠化任務,求y與x的函數關系式.
(3)若甲隊每天綠化費用為0.4萬元,乙隊每天綠化費用為0.15萬元,且甲、乙兩隊施工的總天數不超過14天,則如何安排甲、乙兩隊施工的天數,使施工費用最少?并求出最少費用.

【答案】
(1)解:設乙工程隊每天能完成綠化的面積是xm2,

根據題意得: =3,

解得:x=50,

經檢驗,x=50是原方程的解,

則甲工程隊每天能完成綠化的面積是50×2=100(m2),

答:甲、乙兩工程隊每天能完成的面積分別是100m2、50m2;


(2)解:由題意得:100x+50y=1200,

整理得:y= =24﹣2x;


(3)解:設應甲隊的工作a天,則乙隊工作b天,(0≤a≤14,0≤b≤14)

根據題意得,100a+50b=1200,

∴b=24﹣2a

a+b≤14,

∴a+24﹣2a≤14,

∴a≥10

w=0.4a+0.15b=0.4a+0.15(24﹣2a)=0.1a+3.6,

∴當a=10時,W最少=0.1×10+3.6=4.6萬元.


【解析】(1)設乙工程隊每天能完成綠化的面積是xm2 , 根據在獨立完成面積為300m2區(qū)域的綠化時,甲隊比乙隊少用3天,列方程求解;(2)用總工作量減去甲隊的工作量,然后除以乙隊的工作效率即可求解;(3)設應安排甲隊工作a天,乙隊的工作天,列不等式組求解.
【考點精析】利用分式方程的應用對題目進行判斷即可得到答案,需要熟知列分式方程解應用題的步驟:審題、設未知數、找相等關系列方程、解方程并驗根、寫出答案(要有單位).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形構成.長方形的長為12m,寬為5m,拋物線的最高點C離路面AA1的距離為8m,建立如圖所示的直角坐標系.
(1)求該拋物線的函數表達式,并求出自變量x的取值范圍;
(2)一大型貨運汽車裝載大型設備后高為6m,寬為4m.如果該隧道內設雙向行車道,那么這輛貨車能否安全通過?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某高中學校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調查,并根據調查結果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6個型號) 根據以上信息,解答下列問題

(1)該班共有多少名學生,其中穿175型號校服的學生有多少?
(2)在條形統(tǒng)計圖中,請把空缺部分補充完整;
(3)在扇形統(tǒng)計圖中,請計算185型號校服所對應的扇形圓心角的大。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算題
(1)計算:(﹣1)2017﹣(2﹣ 0+ ;
(2)化簡:(x﹣y)2﹣(x﹣2y)(x+y).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD,AB=6,點E在邊CD上,CE=2DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF,下列結論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤SFCA=3.6,其中正確結論是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠CAB=70°,將△ABC在平面內繞點A旋轉到△AB′C′的位置,使CC′∥AB,則旋轉角的度數為(
A.35°
B.40°
C.50°
D.70°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學為了解九年級學生體能狀況,從九年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級,并依據測試成績繪制了如下兩幅尚不完整的統(tǒng)計圖;
(1)這次抽取的學生的人數是
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中C等級所對應的圓心角為度;
(4)該校九年級學生有1500人,請你估計其中A等級的學生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將一個等腰Rt△ABC對折,使∠A與∠B重合,展開后得折痕CD,再將∠A折疊,使C落在AB上的點F處,展開后,折痕AE交CD于點P,連接PF、EF,下列結論:①tan∠CAE= ﹣1;②圖中共有4對全等三角形;③若將△PEF沿PF翻折,則點E一定落在AB上;④PC=EC;⑤S四邊形DFEP=SAPF . 正確的個數是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點.

(1)求出拋物線的解析式;
(2)在坐標軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標;若不存在,說明理由;
(3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積SBCN、SPMN滿足SBCN=2SPMN , 求出 的值,并求出此時點M的坐標.

查看答案和解析>>

同步練習冊答案