【題目】如圖,矩形ABCD中∠BAC=60°,以點(diǎn)A為圓心,以任意長(zhǎng)為半徑作弧分別交AB,AC于點(diǎn)M,N兩點(diǎn),再分別以點(diǎn)M,N為圓心,以大于MN的長(zhǎng)為半徑作弧交于點(diǎn)P,作射線(xiàn)AP交BC于點(diǎn)E,若BE=2cm,則CE的長(zhǎng)為( )
A.6cmB.6cmC.4cmD.4cm
【答案】C
【解析】
過(guò)E作EF⊥AC于F,由題可得:AP平分∠BAC,根據(jù)角平分線(xiàn)的性質(zhì)可得EB=EF=2cm,根據(jù)矩形的性質(zhì)可得∠B=90°,從而求出∠ACB=30°,然后根據(jù)30°所對(duì)的直角邊是斜邊的一半即可求出結(jié)論.
如圖所示,過(guò)E作EF⊥AC于F,
由題可得:AP平分∠BAC.
∵EB⊥AB,
∴EB=EF=2cm.
∵四邊形ABCD為矩形
∴∠B=90°,
∵∠BAC=60°,
∴∠ACB=30°,
∴Rt△CEF中,CE=2EF=4cm.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(6,),AB⊥x軸于點(diǎn)B,AC⊥y軸于點(diǎn)C,連接BC.點(diǎn)D是線(xiàn)段AC的中點(diǎn),點(diǎn)E的坐標(biāo)為(0,),點(diǎn)F是線(xiàn)段EO上的一個(gè)動(dòng)點(diǎn).過(guò)點(diǎn)A,D,F的拋物線(xiàn)與x軸正半軸交于點(diǎn)G,連接DG交線(xiàn)段AB于點(diǎn)M.
(1)求∠ACB的度數(shù);
(2)當(dāng)點(diǎn)F運(yùn)動(dòng)到原點(diǎn)時(shí),求過(guò)A,D,F三點(diǎn)的拋物線(xiàn)的函數(shù)表達(dá)式及點(diǎn)G的坐標(biāo);
(3)以線(xiàn)段DM為一邊作等邊三角形DMP,點(diǎn)P與點(diǎn)A在直線(xiàn)DG同側(cè),當(dāng)點(diǎn)F從點(diǎn)E運(yùn)動(dòng)到點(diǎn)O時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P運(yùn)動(dòng)的路徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)袋中均有三張除所標(biāo)數(shù)值外完全相同的卡片,甲袋中的三張卡片上所標(biāo)的數(shù)值分別為﹣7,﹣1,3,乙袋中的三張卡片上所標(biāo)的數(shù)值分別為﹣2,1,6.先從甲袋中隨機(jī)取出一張卡片,用x表示取出的卡片上標(biāo)的數(shù)值,再?gòu)囊掖须S機(jī)取出一張卡片,用y表示取出的卡片上標(biāo)的數(shù)值,把x、y分別作為點(diǎn)A的橫坐標(biāo)、縱坐標(biāo).
(1)用適當(dāng)?shù)姆椒▽?xiě)出點(diǎn)A(x,y)的所有情況;
(2)求點(diǎn)A落在第二象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx(a>0)過(guò)點(diǎn)E(8,0),矩形ABCD的邊AB在線(xiàn)段OE上(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)C、D在拋物線(xiàn)上,∠BAD的平分線(xiàn)AM交BC于點(diǎn)M,點(diǎn)N是CD的中點(diǎn),已知OA=2,且OA:AD=1:3.
(1)求拋物線(xiàn)的解析式;
(2)F、G分別為x軸,y軸上的動(dòng)點(diǎn),順次連接M、N、G、F構(gòu)成四邊形MNGF,求四邊形MNGF周長(zhǎng)的最小值;
(3)在x軸下方且在拋物線(xiàn)上是否存在點(diǎn)P,使△ODP中OD邊上的高為?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)矩形ABCD不動(dòng),將拋物線(xiàn)向右平移,當(dāng)平移后的拋物線(xiàn)與矩形的邊有兩個(gè)交點(diǎn)K、L,且直線(xiàn)KL平分矩形的面積時(shí),求拋物線(xiàn)平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y1=ax+b(a≠0)與反比例函數(shù)y2=(k>0),兩函數(shù)圖象交于(4,1),(﹣2,n)兩點(diǎn).
(1)求a,k的值;
(2)若y2>y1>0,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】東營(yíng)市某學(xué)校九年級(jí)一班開(kāi)展了“讀一本好書(shū)”的活動(dòng),班委會(huì)對(duì)學(xué)生閱讀書(shū)籍的情況進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷設(shè)置了“小說(shuō)”、“戲劇”、“散文”、“其他”四個(gè)類(lèi)別,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.根據(jù)圖表提供的信息,回答下列問(wèn)題:
類(lèi)別 | 頻數(shù)(人數(shù)) | 頻率 |
小說(shuō) | 0.5 | |
戲劇 | 4 | n |
散文 | 10 | 0.25 |
其他 | 6 | |
合計(jì) | m | 1 |
(1)計(jì)算m= ,n= .
(2)在扇形統(tǒng)計(jì)圖中,“其他”類(lèi)所在的扇形圓心角為 ;
(3)這個(gè)學(xué)校共有1000人,則讀了戲劇類(lèi)書(shū)籍的學(xué)生大約有多少人?
(4)在調(diào)查問(wèn)卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類(lèi),現(xiàn)從中任意選出2名同學(xué)參加學(xué)校的戲劇社團(tuán),請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求選取的2人恰好是乙和丙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=上,第二象限的點(diǎn)B在反比例函數(shù)y=上,且OA⊥OB,,BC、AD垂直于x軸于C、D,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,點(diǎn)是直線(xiàn)上一動(dòng)點(diǎn),點(diǎn)是直線(xiàn)上動(dòng)點(diǎn),點(diǎn)是直線(xiàn)上一動(dòng)點(diǎn),且,.
(1)如圖1,當(dāng)點(diǎn),,分別在,,邊上時(shí),請(qǐng)你判斷線(xiàn)段,,之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的結(jié)論;
(2)如圖2,當(dāng)在延長(zhǎng)線(xiàn)上,在延長(zhǎng)線(xiàn)上,在延長(zhǎng)線(xiàn)上時(shí),(1)中的結(jié)論是否成立?若成立,請(qǐng)利用圖2證明;若不成立,請(qǐng)判斷線(xiàn)段,,之間有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(3)若,當(dāng)時(shí),請(qǐng)直接寫(xiě)出的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC (BC>AD),∠D=90°,∠ABE=45°,BC=CD,
若AE=5,CE=2,則BC的長(zhǎng)度為_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com