【題目】2017年4月6日,交通運輸部科學(xué)研究院對外發(fā)布《2017年第一季度中國主要城市騎行報告》,報告顯示,在車均使用次數(shù)方面,昆明排名第一,成為“最愛騎共享單車的城市”.目前已經(jīng)投入昆明的共享單車約有112000輛.將“112000”用科學(xué)記數(shù)法表示為( )
A.1.12×103
B.1.12×104
C.1.12×105
D.11.2×104
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,⊙O的直徑AB與弦AC的夾角∠A=30°,AC=CP.
(1)求證:CP是⊙O的切線;
(2)若PC=6,AB=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個橫截面為Rt△ABC的物體,∠ACB=90°,∠CAB=30°,BC=1m,工人師傅要把此物體搬到墻邊,先將AB邊放在地面(直線l)上,再按順時針方向繞點B翻轉(zhuǎn)到△A1BC1的位置(BC1在l上),最后沿射線BC1的方向平移到△A2B2C2的位置,其平移的距離為線段AC的長度(此時A2C2恰好靠在墻邊).
(1)請直接寫出AB= ,AC= ;
(2)畫出在搬動此物體的整個過程中A點所經(jīng)過的路徑,并求出該路徑的長度.
(3)設(shè)O、H分別為邊AB、AC的中點,在將△ABC繞點B順時針方向翻轉(zhuǎn)到△A1BC1的位置這一過程中,求線段OH所掃過部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中有6個點:
A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2,﹣2),E(﹣2,﹣3),F(xiàn)(0,﹣4).
(1)畫出△ABC的外接圓⊙P,則點D與⊙P的位置關(guān)系 ;
(2)△ABC的外接圓的半徑= ,△ABC的內(nèi)切圓的半徑= .
(3)若將直線EF沿y軸向上平移,當(dāng)它經(jīng)過點D時,設(shè)此時的直線為l1.判斷直線l1與⊙P的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,菱形ABCD的頂點A、B在x軸上,點A在點B的左側(cè),點D在y軸的正半軸上,∠BAD=60°,點A的坐標(biāo)為(﹣2,0).
(1)求C點的坐標(biāo);
(2)求直線AC的函數(shù)關(guān)系式;
(3)動點P從點A出發(fā),以每秒1個單位長度的速度,按照A→D→C→B→A的順序在菱形的邊上勻速運動一周,設(shè)運動時間為t秒.求t為何值時,以點P為圓心、以1為半徑的圓與對角線AC相切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=8cm,對角線AC,BD相交于點O,點E,F(xiàn)分別從B,C兩點同時出發(fā),以1cm/s的速度沿BC,CD運動,到點C,D時停止運動,設(shè)運動時間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點△ABC(即三角形的頂點都在格點上).
(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對應(yīng))
(2)在(1)問的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寨卡病毒是一種通過蚊蟲進行傳播的蟲媒病毒,其直徑約為0.0000021cm.將數(shù)據(jù)0.0000021用科學(xué)記數(shù)法表示為( )
A.2.1×10﹣7
B.2.1×107
C.2.1×10﹣6
D.2.1×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點O為坐標(biāo)原點,頂點A、C的坐標(biāo)分別為(0,﹣)、(2,0),將矩形OABC繞點O順時針旋轉(zhuǎn)45°得到矩形OA′B′C′,邊A′B′與y軸交于點D,經(jīng)過坐標(biāo)原點的拋物線y=ax2+bx同時經(jīng)過點A′、C′.
(1)求拋物線所對應(yīng)的函數(shù)表達式;
(2)寫出點B′的坐標(biāo);
(3)點P是邊OC′上一點,過點P作PQ⊥OC′,交拋物線位于y軸右側(cè)部分于點Q,連接OQ、DQ,設(shè)△ODQ的面積為S,當(dāng)直線PQ將矩形OA′B′C′的面積分為1:3的兩部分時,求S的值;
(4)保持矩形OA′B′C′不動,將矩形OABC沿射線CO方向以每秒1個單位長度的速度平移,設(shè)平移時間為t秒(t>0).當(dāng)矩形OABC與矩形OA′B′C′重疊部分圖形為軸對稱多邊形時,直接寫出t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com