【題目】 (2016湖北隨州第23題)九年級(3)班數(shù)學興趣小組經(jīng)過市場調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價與銷售量的相關信息如下.已知商品的進價為30元/件,設該商品的售價為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).
時間x(天) | 1 | 30 | 60 | 90 |
每天銷售量p(件) | 198 | 140 | 80 | 20 |
(1)求出w與x的函數(shù)關系式;
(2)問銷售該商品第幾天時,當天的銷售利潤最大?并求出最大利潤;
(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請直接寫出結(jié)果.
【答案】(1)w=;(2)銷售第45天時,當天獲得的銷售利潤最大,最大利潤是6050元;(3)該商品在銷售過程中,共有24天每天的銷售利潤不低于5600元.
【解析】
試題分析:(1)當0≤x≤50時,設商品的售價y與時間x的函數(shù)關系式為y=kx+b,由點的坐標利用待定系數(shù)法即可求出此時y關于x的函數(shù)關系式,根據(jù)圖形可得出當50<x≤90時,y=90.再結(jié)合給定表格,設每天的銷售量p與時間x的函數(shù)關系式為p=mx+n,套入數(shù)據(jù)利用待定系數(shù)法即可求出p關于x的函數(shù)關系式,根據(jù)銷售利潤=單件利潤×銷售數(shù)量即可得出w關于x的函數(shù)關系式;(2)根據(jù)w關于x的函數(shù)關系式,分段考慮其最值問題.當0≤x≤50時,結(jié)合二次函數(shù)的性質(zhì)即可求出在此范圍內(nèi)w的最大值;當50<x≤90時,根據(jù)一次函數(shù)的性質(zhì)即可求出在此范圍內(nèi)w的最大值,兩個最大值作比較即可得出結(jié)論;(3)令w≥5600,可得出關于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范圍,由此即可得出結(jié)論.
試題解析:(1)當0≤x≤50時,設商品的售價y與時間x的函數(shù)關系式為y=kx+b(k、b為常數(shù)且k≠0),
∵y=kx+b經(jīng)過點(0,40)、(50,90),
∴,解得:,
∴售價y與時間x的函數(shù)關系式為y=x+40;
當50<x≤90時,y=90.
∴售價y與時間x的函數(shù)關系式為y=.
由書記可知每天的銷售量p與時間x成一次函數(shù)關系,
設每天的銷售量p與時間x的函數(shù)關系式為p=mx+n(m、n為常數(shù),且m≠0),
∵p=mx+n過點(60,80)、(30,140),
∴,解得:,
∴p=﹣2x+200(0≤x≤90,且x為整數(shù)),
當0≤x≤50時,w=(y﹣30)p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;
當50<x≤90時,w=(90﹣30)(﹣2x+200)=﹣120x+12000.
綜上所示,每天的銷售利潤w與時間x的函數(shù)關系式是w=.
(2)當0≤x≤50時,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,
∵a=﹣2<0且0≤x≤50,
∴當x=45時,w取最大值,最大值為6050元.
當50<x≤90時,w=﹣120x+12000,
∵k=﹣120<0,w隨x增大而減小,
∴當x=50時,w取最大值,最大值為6000元.
∵6050>6000,
∴當x=45時,w最大,最大值為6050元.
即銷售第45天時,當天獲得的銷售利潤最大,最大利潤是6050元.
(3)當0≤x≤50時,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,
解得:30≤x≤50,
50﹣30+1=21(天);
當50<x≤90時,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,
解得:50<x≤53,
∵x為整數(shù),
∴50<x≤53,
53﹣50=3(天).
綜上可知:21+3=24(天),
故該商品在銷售過程中,共有24天每天的銷售利潤不低于5600元.
科目:初中數(shù)學 來源: 題型:
【題目】我們已經(jīng)學習了反比例函數(shù),在生活中,兩個變量間具有反比例函數(shù)關系的實例有許多,例如:在路程s一定時,平均速度v是運行時間t的反比例函數(shù),其函數(shù)關系式可以寫為:v= (s為常數(shù),s≠0).
請你仿照上例,再舉一個在日常生活、學習中,兩個變量間具有反比例函數(shù)關系的實例:;并寫出這兩個變量之間的函數(shù)解析式: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地計劃用120~180天(含120與180天)的時間建設一項水利工程,工程需要運送的土石方總量為360萬立方米.
(1)寫出運輸公司完成任務所需的時間y(單位:天)與平均每天的工作量x(單位:萬立方米)之間的函數(shù)關系式,并給出自變量x的取值范圍;
(2)由于工程進度的需要,實際平均每天運送土石方比原計劃多5000立方米,工期比原計劃減少了24天,原計劃和實際平均每天運送土石方各是多少萬立方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下面的內(nèi)容,再解決問題,例題:若m2+2mn+2n2﹣6n+9=0,求m和n的值. 解:∵m2+2mn+2n2﹣6n+9=0
∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0
∴m=﹣3,n=3
問題
(1)若△ABC的三邊長a、b、c都是正整數(shù),且滿足a2+b2﹣6a﹣6b+18+|3﹣c|=0,請問△ABC是什么形狀?說明理由.
(2)若x2+4y2﹣2xy+12y+12=0,求xy的值.
(3)已知a﹣b=4,ab+c2﹣6c+13=0,則a+b+c= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和爸爸從家步行去公園,爸爸先出發(fā)一直勻速前行,小明后出發(fā).家到公園的距離為2500m,如圖是小明和爸爸所走的路程s(m)與步行時間t(min)的函數(shù)圖象.
(1)直接寫出小明所走路程s與時間t的函數(shù)關系式;
(2)小明出發(fā)多少時間與爸爸第三次相遇?
(3)在速度都不變的情況下,小明希望比爸爸早20min到達公園,則小明在步行過程中停留的時間需作怎樣的調(diào)整?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關信息,如表所示:
銷售量n(件) | n=50﹣x |
銷售單價m(元/件) | 當1≤x≤20時,m=20+x |
當21≤x≤30時,m=10+ |
(1)請計算第幾天該商品單價為25元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關于x(天)的函數(shù)關系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com