【題目】如圖,在四邊形ABCD中,AC平分∠DAB,∠D+ABC=180°,CEAB,垂足為E,若△ACD和△ABC的面積分別為5038,則△CBE的面積為_____

【答案】6

【解析】

過C作CFAD于F,先判定CDF≌△CBE(AAS),即可得出SCDF=SCBE,設(shè)SCDF=SCBE=x,再根據(jù)RtACFRtACE(HL),即可得出SACF=SACE,最后解方程即可得到CBE的面積.

如圖,過C作CFAD于F,則CFD=E=90°,

∵∠D+ABC=180°,CBE+ABC=180°,

∴∠D=CBE,

AC平分DAE,CFAD,CEAE,

CF=CE,

∴△CDF≌△CBE(AAS),

SCDF=SCBE,

設(shè)SCDF=SCBE=x,

∵∠AFC=E=90°,AC=AC,

RtACFRtACE(HL),

SACF=SACE

∵△ACD和ABC的面積分別為50和38,

50﹣x=38+x,

解得x=6,

故答案為:6.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角△ABC中,AB=AC=8,以AB為直徑的半圓O交斜邊BC于D,則陰影部分面積為(結(jié)果保留π)( )

A.24﹣4π
B.32﹣4π
C.32﹣8π
D.16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高空拋物極其危險,是我們必須杜絕的行為.據(jù)研究,高空拋物下落的時間t(單位:s)和高度 h(單位:m)近似滿足公式 t=(不考慮風速的影響)

(1) 50m 高空拋物到落地所需時間 t1 是多少 s, 100m 高空拋物到落地所 需時間 t2 是多少 s;

(2)t2 t1 的多少倍

(3)經(jīng)過 1.5s,高空拋物下落的高度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將三角形紙片ABC沿AD折疊,使點C落在BD邊上的點E處.若BC=10,BE=2,則AB2AC2的值為 ______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù),完成下列問題:

1)求此函數(shù)圖像與x軸、y軸的交點坐標;

2)畫出此函數(shù)的圖像;觀察圖像,當時,x的取值范圍是 ;

3平移一次函數(shù)的圖像后經(jīng)過點(-3,1),求平移后的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABDBDC的平分線交于E,BE交CD于點F,1+2=90°.求證:

(1)ABCD;

(2)2+3=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ABAC,∠A=108°.

1)實踐與操作:作AB的垂直平分線DE,與AB,BC分別交于點D,E(用尺規(guī)作圖.保留作圖痕跡,不要求寫作法)

2)推理與計算:求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,由相同邊長的小正方形組成的網(wǎng)格圖形,A、B、C都在格點上,利用網(wǎng)格畫圖:(注:所畫線條用黑色簽字筆描黑)

1)過點CAB的平行線;

2)過點BAC的垂線,垂足為點G;過點BAB的垂線,交AC的延長線于H

3)點BAC的距離是線段 的長度,線段AB的長度是點 到直線 的距離.

4)線段BG、AB的大小關(guān)系為:BG AB(填、“=”),理由是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2008年北京奧運會后,同學們參與體育鍛煉的熱情高漲.為了解他們平均每周的鍛煉時間,小明同學在校內(nèi)隨機調(diào)查了50名同學,統(tǒng)計并制作了如下的頻數(shù)分布表和扇形統(tǒng)計圖.根據(jù)上述信息解答下列問題:

(1)m= , n=;
(2)在扇形統(tǒng)計圖中,D組所占圓心角的度數(shù)為度;
(3)全校共有3000名學生,估計該校平均每周體育鍛煉時間不少于6小時的學生約有多少名?

查看答案和解析>>

同步練習冊答案