【題目】如圖,RtABC中,ACCB,點(diǎn)EF分別是AC,BC上的點(diǎn),CEF的外接圓交AB于點(diǎn)QD

1)如圖1,若點(diǎn)DAB的中點(diǎn),求證:∠DEF=∠B;

2)在(1)問(wèn)的條件下:

①如圖2,連結(jié)CD,交EFH,AC4,若EHD為等腰三角形,求CF的長(zhǎng)度.

②如圖2,AEDECF的面積之比是34,且ED3,求CEDECF的面積之比(直接寫出答案).

3)如圖3,連接CQCD,若AE+BFEF,求證:∠QCD45°

【答案】(1)見解析;(2)0242;;3)見解析.

【解析】

1)連結(jié)CD.根據(jù)圓周角定理解決問(wèn)題即可.

2)①分三種情形:如圖2-1中,當(dāng)EH=HD,可證四邊形CFDE是正方形CF=2.如圖2-2中,當(dāng)EH=ED時(shí),∠EDH=EHD=67.5°,如圖2-3中,當(dāng)DA=FH時(shí),點(diǎn)EA重合,點(diǎn)HC重合,分別求解即可解決問(wèn)題.

②如圖2-4中,作DMACM,DNBCN,連接DF.證明ADE≌△CDFSAS),推出AE=CF,SADE=SCDF,由DC平分∠ACBDMAC,DNBC,推出DM=DN,可得四邊形DMCN是正方形,推出DM=CM=CN=DN,因?yàn)?/span>,,所以可以假設(shè)DN=3k,EC=4k,則AC=BC=6kAE=CF=2k,再利用三角形的面積公式計(jì)算機(jī)可解決問(wèn)題.

3)連接OD,OQ,作ERAB,OHAB,FKAB.想辦法證明ODQ是等腰直角三角形即可解決問(wèn)題.

1)證明:連結(jié)CD

RtABC中,∵ACCB,

∴∠A=∠B45°

CDDB,

∴∠DCB=∠B45°

∵∠DEF=∠DCB,

∴∠DEF=∠B

2)解:①如圖21中,當(dāng)EHHD,可證四邊形CFDE是正方形CF2

如圖22中,當(dāng)EHED時(shí),∠EDH=∠EHD67.5°,

∵∠EDF=∠CDB90°

∴∠EDH=∠BDF67.5°,

∴∠BFD180°45°67.5°67.5°

∴∠BDF=∠BFD,

BDBF

ACBC4,∠ACB90°,

AB4,

BDBF2,

CF42

如圖23中,當(dāng)DAFH時(shí),點(diǎn)EA重合,點(diǎn)HC重合,CF0

綜上所述,滿足條件的CF的值為0242

②如圖中,作DMACMDNBCN,連接DF

CACB,ADDB,∠ACB90°,

CDAB,∠ACD=∠BCD45°,CDDADB

DEDF,

∵∠ADC=∠EDF90°

∴∠ADE=∠CDF,

∴△ADE≌△CDFSAS),

AECF,SADESCDF,

DC平分∠ACB,DMACDNBC,

DMDN,可得四邊形DMCN是正方形,

DMCMCNDN,

,

∴可以假設(shè)DN3k,EC4k,則ACBC6k,AECF2k,

3)證明:連接ODOQ,作ERABOHAB,FKAB

EROHFK,EOOF,

RHHK

OHER+FK),

ERAE,FKFB

OHAE+BF)=EFOEOQ,

∴∠OQD=∠ODQ45°,

∴∠QOD90°,

∴∠QCD45°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解決農(nóng)民工子女就近入學(xué)問(wèn)題,我市第一小學(xué)計(jì)劃2012年秋季學(xué)期擴(kuò)大辦學(xué)規(guī)模.學(xué)校決定開支八萬(wàn)元全部用于購(gòu)買課桌凳、辦公桌椅和電腦,要求購(gòu)買的課桌凳與辦公桌椅的數(shù)量比為20:1,購(gòu)買電腦的資金不低于16000元,但不超過(guò)24000元.已知一套辦公桌椅比一套課桌凳貴80元,用2000元恰好可以買到10套課桌凳和4套辦公桌椅.(課桌凳和辦公桌椅均成套購(gòu)進(jìn))

1)一套課桌凳和一套辦公桌椅的價(jià)格分別為多少元?

2)求出課桌凳和辦公桌椅的購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,點(diǎn)D在邊AB上,點(diǎn)E在線段CD上,且∠ACD=B=BAE.

1)求證:;

2)當(dāng)點(diǎn)ECD中點(diǎn)時(shí),求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線相交于點(diǎn)O,過(guò)點(diǎn)ABD的平行線交CD的延長(zhǎng)線于點(diǎn)E

求證: ;

,連接OE,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)在很多家庭都使用折疊型西餐桌來(lái)節(jié)省空間,兩邊翻開后成圓形桌面(如圖1).餐桌兩邊ABCD平行且相等(如圖2),小華用皮帶尺量出AC2米,AB1米,那么桌面翻成圓桌后,桌子面積會(huì)增加_____平方米.(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加全國(guó)比賽,對(duì)他們進(jìn)行了8次測(cè)試,測(cè)試成績(jī)(單位:環(huán))如下表:

第一次

第二次

第三次

第四次

第五次

第六次

第七次

第八次

10

8

9

8

10

9

10

8

10

7

10

10

9

8

8

10

1)根據(jù)表格中的數(shù)據(jù),計(jì)算出甲的平均成績(jī)是 環(huán),乙的平均成績(jī)是 環(huán);

2)分別計(jì)算甲、乙兩名運(yùn)動(dòng)員8次測(cè)試成績(jī)的方差;

3)根據(jù)(1)(2)計(jì)算的結(jié)果,你認(rèn)為推薦誰(shuí)參加全國(guó)比賽更合適,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)數(shù)據(jù)顯示:一般成人喝半斤低度白酒后,1.5小時(shí)內(nèi)(包括1.5小時(shí))其血液中酒精含量y(毫克/百毫升)與時(shí)間x(時(shí))的關(guān)系可近似地用二次函數(shù)y=﹣200x2+400x表示;1.5小時(shí)后(包括1.5小時(shí))yx可近似地用反比例函數(shù)y=(k>0)表示(如圖所示).

(1)喝酒后多長(zhǎng)時(shí)間血液中的酒精含量達(dá)到最大值?最大值為多少?

(2)k的值.

(3)按國(guó)家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時(shí)屬于酒后駕駛,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△OAB的頂點(diǎn)坐標(biāo)分別為O0,0)、A21)、B1,﹣2).

1)以原點(diǎn)O為位似中心,在y軸的右側(cè)畫出△OAB的一個(gè)位似△OA1B1,使它與△OAB的相似比為21,并寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo);

2)畫出將△OAB向左平移2個(gè)單位,再向上平移1個(gè)單位后的△O2A2B2,并寫出點(diǎn)A2的坐標(biāo);

3)判斷△OA1B1與△O2A2B2,能否是關(guān)于某一點(diǎn)M為位似中心的位似圖形?若是,請(qǐng)?jiān)趫D中標(biāo)出位似中心M,并寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)是( )

A. 70° B. 35° C. 40° D. 90°

查看答案和解析>>

同步練習(xí)冊(cè)答案