【題目】如圖,某工程隊在工地利用互相垂直的兩面墻AE、AF,另兩邊用鐵柵欄圍成一個長方形場地ABCD,中間再用鐵柵欄分割成兩個長方形,鐵柵欄總長180米,已知墻AE長90米,墻AF長為60米.
設(shè)米,則CD為______米,四邊形ABCD的面積為______米;
若長方形ABCD的面積為4000平方米,問BC為多少米?
【答案】(1),(2)米,長方形的面積為4000平方米
【解析】
(1)根據(jù)鐵柵欄總長為180米可得CD的長,再根據(jù)矩形的面積公式可得四邊形的面積;
(2)根據(jù)題意列出關(guān)于x的一元二次方程,解之求得x的值,再依據(jù)兩面墻的長度取舍即可得.
(1)設(shè)BC=x米,則CD=(180﹣2x)米.四邊形ABCD的面積為x(180﹣2x)米2.
故答案為:(180﹣2x),x(180﹣2x);
(2)由題意,得:x(180﹣2x)=4000
整理,得:x2﹣90x+2000=0
解得:x=40或x=50.
當x=40時,180﹣2x=100>90,不符合題意,舍去;
當x=50時,180﹣2x=80<90,符合題意.
答:BC=50米,長方形的面積為4000平方米.
科目:初中數(shù)學 來源: 題型:
【題目】解答下列各題
(1)已知:如圖1,直線AB、CD被直線AC所截,點E在AC上,且∠A=∠D+∠CED,求證:AB∥CD;
(2)如圖2,在正方形ABCD中,AB=8,BE=6,DF=4.
①試判斷△AEF的形狀,并說明理由;
②求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題情境)如圖,Rt△ABC中,∠ACB=90°,CD⊥AB,我們可以利用△ABC與△ACD相似證明AC2=AD·AB,這個結(jié)論我們稱之為射影定理,試證明這個定理;
(結(jié)論運用)如圖,正方形ABCD的邊長為6,點O是對角線AC、BD的交點,點E在CD上,過點C作CF⊥BE,垂足為F,連接OF.
(1)試利用射影定理證明△ABC∽△BED;
(2)若DE=2CE,求OF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校是乒乓球體育傳統(tǒng)項目學校,為進一步推動該項目的開展,學校準備到體育用品店購買直拍球拍和橫拍球拍若干副,并且每買一副球拍必須要買10個乒乓球,乒乓球的單價為2元/個,若購買20副直拍球拍和15副橫拍球拍花費9000元;購買10副橫拍球拍比購買5副直拍球拍多花費1600元.
(1)求兩種球拍每副各多少元?
(2)若學校購買兩種球拍共40副,且直拍球拍的數(shù)量不多于橫拍球拍數(shù)量的3倍,請你給出一種費用最少的方案,并求出該方案所需費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,、、、各點的坐標分別為、、、.
(1)在給出的圖形中,畫出四邊形關(guān)于軸對稱的四邊形,并寫出點和的坐標;
(2)在四邊形內(nèi)部畫一條線段將四邊形分割成兩個等腰三角形,并直接寫出兩個等腰三角形的面積差.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,,,,點、在軸上且關(guān)于軸對稱.
(1)求點的坐標;
(2)動點以每秒2個單位長度的速度從點出發(fā)沿軸正方向向終點運動,設(shè)運動時間為秒,點到直線的距離的長為,求與的關(guān)系式;
(3)在(2)的條件下,當點到的距離為時,連接,作的平分線分別交、于點、,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點C.
(1)若點A(0,6),N(0,2),∠ABN=30°,求點B的坐標;
(2)若D為線段NB的中點,求證:直線CD是⊙M的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com