【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進行下去,得到Cn,若點P(2017,m)在拋物線Cn上,則m為( )
A. 1 B. ﹣1 C. 2 D. ﹣2
【答案】A
【解析】∵一段拋物線:y=-x(x-2)(0≤x≤2),
∴圖象與x軸交點坐標(biāo)為:(0,0),(2,0),
∵將C1繞點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;
將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3;
…
如此進行下去,直至得Cn.
∵2017÷2=1008……1,
∴點P(2017,m)在C1009上,
∴C1009的與x軸的交點橫坐標(biāo)為(2016,0),(2018,0),且圖象在x軸上方,
∴C1009的解析式為:y=-(x-2016)(x-2018),
當(dāng)x=2017時,y=-(2017-2016)×(2017-2018)=1,
故選 A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,腰AB的垂直平分線DE交AB于點E,交AC于點D,且∠DBC=15°,則∠A的度數(shù)是 ( )
A.50°B.36°C.40°D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=16cm,BC=10cm,點D為AB的中點.如果點P在線段BC上以2cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動,當(dāng)以B、P、D為頂點的三角形與以C、Q、P為頂點的三角形全等時,點Q的速度可能為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y1=a1(x﹣m)2+5,點(m,25)在拋物線y2=a2x2+b2x+c2上,其中m>0.
(1)若a1=﹣1,點(1,4)在拋物線y1=a1(x﹣m)2+5上,求m的值;
(2)記O為坐標(biāo)原點,拋物線y2=a2x2+b2x+c2的頂點為M,若c2=0,點A(2,0)在此拋物線上,∠OMA=90°,求點M的坐標(biāo);
(3)若y1+y2=x2+16x+13,且4a2c2﹣b22=﹣8a2,求拋物線y2=a2x2+b2x+c2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個裝有2個紅球和3個白球(每個球除顏色外完全相同)的盒子中任意摸出一個球,摸到紅球小明獲勝,摸到白球小剛獲勝,這個游戲?qū)﹄p方公平嗎?為什么?如何修改可以讓游戲公平?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)與x軸有交點.
(1)求m的取值范圍;
(2)如果該二次函數(shù)的圖像與x軸的交點分別為(x1,0),(x2,0),且2 x1 x2+ x1+ x2≥20,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當(dāng)x=﹣3或1時,y1=y2;
②當(dāng)﹣3<x<0或x>1時,y1>y2,即通過觀察函數(shù)的圖象,可以得到不等式ax+b>的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識的經(jīng)驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.
下面是他的探究過程,請將(2)、(3)、(4)補充完整:
(1)將不等式按條件進行轉(zhuǎn)化:
當(dāng)x=0時,原不等式不成立;
當(dāng)x>0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1>;
當(dāng)x<0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1<;
(2)構(gòu)造函數(shù),畫出圖象
設(shè)y3=x2+4x﹣1,y4=,在同一坐標(biāo)系中分別畫出這兩個函數(shù)的圖象.
雙曲線y4=如圖2所示,請在此坐標(biāo)系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(3)確定兩個函數(shù)圖象公共點的橫坐標(biāo)
觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為 ;
(4)借助圖象,寫出解集
結(jié)合(1)的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等腰直角△ABC外一點,把BP繞點B順時針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )
A. 1∶ B. 1∶2 C. ∶2 D. 1∶
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com