【題目】如圖,已知△ABC中,ABAC16cm,BC10cm,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線(xiàn)段BC上以2cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng),當(dāng)以BP、D為頂點(diǎn)的三角形與以C、Q、P為頂點(diǎn)的三角形全等時(shí),點(diǎn)Q的速度可能為_____

【答案】23.2厘米/秒.

【解析】

因?yàn)?/span>AB=AC,所以有∠B=∠C,故三角形BDP與三角形CQP中,B點(diǎn)和C點(diǎn)為對(duì)應(yīng)點(diǎn),DP與PQ對(duì)應(yīng),所以分成兩種情況進(jìn)行討論:①BP=CQ,BD=CQ;②BP=CP,BD=CQ,設(shè)運(yùn)動(dòng)時(shí)間為t,然后建立方程解出即可

因?yàn)?/span>AB=AC,

所以有∠B=C,

故三角形BDP與三角形CQP中,B點(diǎn)和C點(diǎn)為對(duì)應(yīng)點(diǎn),DPPQ對(duì)應(yīng),

所以BP、D為頂點(diǎn)的三角形與以C、Q、P為頂點(diǎn)的三角形全等有兩種情況

BP=CQ,BD=CQ時(shí),則Q的運(yùn)動(dòng)速度與P的運(yùn)動(dòng)速度相等,為2cm/s

BP=CP,BD=CQ時(shí),設(shè)運(yùn)動(dòng)時(shí)間為t

BC=10

2t=10-2t,

解出t=

AB=16,DAB中點(diǎn)

BD=8

CQ=8

=

所以Q的運(yùn)動(dòng)速度可能是2cm/s或者cm/s

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=10°,點(diǎn)POB上.以點(diǎn)P為圓心,OP為半徑畫(huà)弧,交OA于點(diǎn)P1(點(diǎn)P1與點(diǎn)O不重合),連接PP1;再以點(diǎn)P1為圓心,OP為半徑畫(huà)弧,交OB于點(diǎn)P2(點(diǎn)P2與點(diǎn)P不重合),連接P1 P2;再以點(diǎn)P2為圓心,OP為半徑畫(huà)弧,交OA于點(diǎn)P3(點(diǎn)P3與點(diǎn)P1不重合),連接P2 P3;……

請(qǐng)按照上面的要求繼續(xù)操作并探究:

P3 P2 P4=_____°;按照上面的要求一直畫(huà)下去,得到點(diǎn)Pn,若之后就不能再畫(huà)出符合要求點(diǎn)Pn+1了,則n=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一棵樹(shù)高h(yuǎn)(m)與生長(zhǎng)時(shí)間n(年)之間有一定關(guān)系,請(qǐng)你根據(jù)下表中數(shù)據(jù),寫(xiě)出h(m)與n(年)之間的關(guān)系式:_____

n/年

2

4

6

8

h/m

2.6

3.2

3.8

4.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器超市銷(xiāo)售每臺(tái)進(jìn)價(jià)分別為200元、170元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷(xiāo)售情況:

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn) = 銷(xiāo)售收入-進(jìn)貨成本)

1)求AB兩種型號(hào)的電風(fēng)扇的銷(xiāo)售單價(jià);

2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

3)在(2)的條件下,超市銷(xiāo)售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,ABAC,DBC邊的中點(diǎn),點(diǎn)E與點(diǎn)D關(guān)于AB對(duì)稱(chēng),連接AE、BE,分別延長(zhǎng)AE、CB交于點(diǎn)F,若∠F48°,則∠C的度數(shù)是( 。

A. 21°B. 52°C. 69°D. 74°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】201631某園林公司派出一批工人去完成種植2200棵景觀樹(shù)木的任務(wù),這批工人31日到5日種植的數(shù)量(單位棵)如圖所示

1)這批工人前兩天平均每天種植多少棵景觀樹(shù)木?

2)因業(yè)務(wù)需要,310日必須完成種植任務(wù),你認(rèn)為該園林公司是否需要增派工人?請(qǐng)運(yùn)用統(tǒng)計(jì)知識(shí)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中l1,l,2表示兩人離A地的距離sm)與時(shí)間th)的關(guān)系,請(qǐng)結(jié)合圖象解答下列問(wèn)題:

1)表示甲離A地的距離與時(shí)間關(guān)系的圖象是   (填l1l2);甲的速度是   km/h);乙的速度是   km/h);

2)甲出發(fā)多長(zhǎng)時(shí)間后兩人相遇?(利用方程解決)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一段拋物線(xiàn):y=﹣xx﹣2)(0≤x2)記為C1,它與x軸交于兩點(diǎn)OA1;將C1A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進(jìn)行下去,得到Cn,若點(diǎn)P(2017,m)在拋物線(xiàn)Cn上,則m( )

A. 1 B. ﹣1 C. 2 D. ﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,矩形ABCD中,AB,AD4,在BC邊上取點(diǎn)E,使BEAB,將△ABE向左平移到△DCF的位置,得到四邊形AEFD

1)求證:四邊形AEFD是菱形;

2)如圖2,將△DCF繞點(diǎn)D旋轉(zhuǎn)至△DGA,連接GE,求線(xiàn)段GE的長(zhǎng);

3)如圖3,設(shè)P、Q分別是EF、AE上的兩點(diǎn),且PDQ=67.5°,試探究線(xiàn)段PFAQPQ之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案