如圖,在直角梯形ABCD中,∠A=90°,∠B=120°,AD=1,AB=,在底邊AB上取點E,在射線DC上取點F,使得∠DEF=120°,當(dāng)點E是AB的中點時,線段DF的長度是 。
科目:初中數(shù)學(xué) 來源: 題型:
甲、乙兩車從A地駛向B地,甲車比乙車早行駛2h,并且在途中休息了0.5h,休息前后速度相同,如圖是甲乙兩車行駛的距離y(km)與時間x(h)的函數(shù)圖象.
(1)求出圖中a的值;
(2)求出甲車行駛路程y(km)與時間x(h)的函數(shù)表達式,并寫出相應(yīng)的x的取值范圍;
(3)當(dāng)甲車行駛多長時間時,兩車恰好相距40km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知,則反比例函數(shù)且反比例函數(shù)的圖象在每個象限內(nèi)y隨x的增大而增大,那么反比例函數(shù)的關(guān)系式為【 】
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,過點O作直線EF⊥BD,分別交AD、BC于點E和點F,求證:四邊形BEDF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【閱讀材料】己知,如圖1,在面積為S的△ABC中,BC=a,AC=b,AB=c,內(nèi)切⊙O的半徑為r.連接OA、OB、OC,△ABC被劃分為三個小三角形.
∵S=S△OBC+S△OAC+S△OAB=BC·r+AC·r+AB·r=a·r+b·r+c·r=(a+b+c)r
∴
(1)【類比推理】如圖2,若面積為S的四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),各邊長分別為AB=a,BC=b,CD=c,AD=d,求四邊形的內(nèi)切圓半徑r的值;
(2)【理解應(yīng)用】如圖3,在Rt△ABC中,內(nèi)切圓O的半徑為r,⊙O與△ABC分別相切于D、E和F,己知AD=3,BD=2,求r的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,以矩形ABCD的對角線AC的中點O為圓心、OA長為半徑作⊙O,⊙O經(jīng)過B、D兩點,過點B作BK⊥AC,垂足為K,過點D作DH∥KB,DH分別與AC、AB、⊙O及CB的延長線相交于點E、F、G、H。
(1)求證:AE=CK
(2)若AB=a,AD=a(a為常數(shù)),求BK的長(用含a的代數(shù)式表示)。
(3)若F是EG的中點,且DE=6,求⊙O的半徑和GH的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,AB=3,BC=4.動點P從點A出發(fā)沿AC向終點C運動,同時動點Q從點B出發(fā)沿BA向點A運動,到達A點后立刻以原來的速度沿AB返回.點P、Q運動速度均為每秒1個單位長度,當(dāng)點P到達點C時停止運動,點Q也同時停止.連接PQ,設(shè)運動時間為t(t >0)秒.
(1)求線段AC的長度;
(2)當(dāng)點Q從點B向點A運動時(未到達A點),求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)伴隨著P、Q兩點的運動,線段PQ的垂直平分線為l:
①當(dāng)l經(jīng)過點A時,射線QP交AD于點E,求AE的長;
②當(dāng)l經(jīng)過點B時,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com