【題目】如圖,MN是⊙O的直徑,QN是⊙O的切線,連接MQ交⊙O于點H,E為上一點,連接ME,NE,NE交MQ于點F,且ME2=EFEN.
(1)求證:QN=QF;
(2)若點E到弦MH的距離為1,cos∠Q=,求⊙O的半徑.
【答案】(1)證明見解析;(2)2.5.
【解析】
試題分析:(1)如圖1,通過相似三角形(△MEF∽△MEN)的對應角相等推知,∠1=∠EMN;又由弦切角定理、對頂角相等證得∠2=∠3;最后根據(jù)等角對等邊證得結論;
(2)如圖2,連接OE交MQ于點G,設⊙O的半徑是r.根據(jù)(1)中的相似三角形的性質(zhì)證得∠EMF=∠ENM,所以由“圓周角、弧、弦間的關系”推知點E是弧MH的中點,則OE⊥MQ;然后通過解直角△MNE求得cos∠Q=sin∠GMO=,則可以求r的值.
試題解析:(1)如圖1,
∵ME2=EFEN,
∴.
又∵∠MEF=∠MEN,
∴△MEF∽△MEN,
∴∠1=∠EMN.
∵∠1=∠2,∠3=∠EMN,
∴∠2=∠3,
∴QN=QF;
(2)解:如圖2,連接OE交MQ于點G,設⊙O的半徑是r.
由(1)知,△MEF∽△MEN,則∠4=∠5.
∴.
∴OE⊥MQ,
∴EG=1.
∵cos∠Q=,且∠Q+∠GMO=90°,
∴sin∠GMO=,
∴,即,
解得,r=2.5,即⊙O的半徑是2.5.
科目:初中數(shù)學 來源: 題型:
【題目】為籌備班級的初中畢業(yè)聯(lián)歡會,班長對全班學生愛吃哪幾種水果作了民意調(diào)查.那么最終買什么水果,下面的調(diào)查數(shù)據(jù)中最值得關注的是( )
A.中位數(shù)
B.平均數(shù)
C.眾數(shù)
D.加權平均數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市在元旦節(jié)期間推出如下優(yōu)惠方案:
(1)一次性購物不超過100元不享受優(yōu)惠;
(2)一次性購物超過100元但不超過300元優(yōu)惠10%;
(3)一次性購物超過300元一律優(yōu)惠20%.
市民王波在國慶期間兩次購物分別付款80元和252元,如果王波一次性購買與上兩次相同的商品,則應付款_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品進價為800元,出售時標價為1200元,后來商店準備打折出售,但要保持利潤率不低于20%,則最多打( )折.
A.6折B.7折C.8折D.9折
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若圓錐的底面半徑為2cm,母線長為3cm,則它的側(cè)面積為( 。
A. 2πcm2 B. 3πcm2 C. 6πcm2 D. 12πcm2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com