【題目】國際足球比賽對足球的質(zhì)量有嚴(yán)格的要求,比賽所用足球上標(biāo)有:430±20(g).請問:

(1)比賽所用足球的標(biāo)準(zhǔn)質(zhì)量是多少?符合比賽所用足球質(zhì)量的合格范圍是多少?

(2)組委會隨機(jī)抽查了8只足球的質(zhì)量,高于標(biāo)準(zhǔn)質(zhì)量記為正,低于標(biāo)準(zhǔn)質(zhì)量記為負(fù),結(jié)果分別是:﹣15g,+12g,﹣24g,﹣6g,+13g,﹣5g,+22g,﹣9g,求這8只足球質(zhì)量的合格率.

(足球質(zhì)量的合格率=

【答案】(1) 410g~450g (2) 75%

【解析】

(1)由題意易知,足球上標(biāo)有:430±20(g),說明足球的標(biāo)準(zhǔn)質(zhì)量為430g,最多不超過質(zhì)量的20g,最少不足20g,即可求解;

(2)根據(jù)標(biāo)準(zhǔn)質(zhì)量和抽查結(jié)果,可準(zhǔn)確求出每個(gè)足球的質(zhì)量,在質(zhì)量的合格范圍內(nèi)的個(gè)數(shù)容易求出,進(jìn)一步可求解.

(1)由題意可知:比賽所用足球的標(biāo)準(zhǔn)質(zhì)量是430g,

符合比賽所用足球質(zhì)量的合格范圍是410g~450g

(2)這8只足球的質(zhì)量分別為415g,442g,406g,424g,443g,425g,452g,421g,有6只足球的質(zhì)量是合格的,

即合格率為:×100%=75%.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)A,B,C,其中AB=2,BC=1,如圖所示. 設(shè)點(diǎn)A,B,C所對應(yīng)數(shù)的和是p.

(1)若以B為原點(diǎn),則點(diǎn)A,C所對應(yīng)的數(shù)為 、 ,p的值為 ;若以C為原點(diǎn),p 的值為 ;

(2)若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=28,求p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BF平分∠ABC,交AD于點(diǎn)FCE平分∠BCD,交AD于點(diǎn)E,AB=6EF=2,則BC長為( )

A. 10 B. 8 C. 14 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程

如圖,已知DEBC,DF、BE分別平分∠ADEABC,可推得∠FDE=DEB的理由:

DEBC(已知)

∴∠ADE=      .(       

DFBE分別平分∠ADE、ABC

∴∠ADF=      ,

ABE=      .(       

∴∠ADF=ABE

DF    .(       

∴∠FDE=DEB. (      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對電視節(jié)目的喜愛情況,隨機(jī)調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目(被調(diào)查的學(xué)生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個(gè)統(tǒng)計(jì)圖(不完整)請你根據(jù)圖中所提供的信息,完成下列問題:

(1)求本次調(diào)查的學(xué)生人數(shù);

(2)請將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整,并求出新聞節(jié)目在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);

(3)若該中學(xué)有2000名學(xué)生,請估計(jì)該校喜愛電視劇節(jié)目的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級640名學(xué)生在計(jì)算機(jī)應(yīng)用培訓(xùn)前、后各參加了一次水平相同的測試,并以同一標(biāo)準(zhǔn)分成不合格合格、優(yōu)秀”3個(gè)等級,為了解培訓(xùn)效果,用抽樣調(diào)查的方式從中抽取32名學(xué)生的2次測試等級,并繪制成條形統(tǒng)計(jì)圖:

1)這32名學(xué)生經(jīng)過培訓(xùn),測試等級不合格的百分比比培訓(xùn)前減少了多少?

2)估計(jì)該校八年級學(xué)生中,培訓(xùn)前、后等級為合格優(yōu)秀的學(xué)生各有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)【證法回顧】證明:三角形中位線定理.

已知:如圖1,DE是△ABC的中位線.

求證:   

證明:添加輔助線:如圖1,在△ABC中,延長DE (D、E分別是AB、AC的中點(diǎn))到點(diǎn)F,使得EF=DE,連接CF;

請繼續(xù)完成證明過程:

(2)【問題解決】

如圖2,在正方形ABCD中,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=2,DF=3,∠GEF=90°,求GF的長.

(3)【拓展研究】

如圖3,在四邊形ABCD中,∠A=105°,∠D=120°,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=,DF=2,∠GEF=90°,求GF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家經(jīng)銷一種綠茶,用于裝修門面已投資3000元,已知綠茶每千克成本50元,在第一個(gè)月的試銷時(shí)間內(nèi)發(fā)現(xiàn),銷量w(kg)隨銷售單價(jià)x(元/kg)的變化而變化,具體變化規(guī)律如下表所示

銷售單價(jià)x(元/kg)

70

75

80

85

90

銷售量w(kg)

100

90

80

70

60

設(shè)該綠茶的月銷售利潤為y(元)(銷售利潤=單價(jià)×銷售量﹣成本﹣投資).
(1)請根據(jù)上表,寫出w與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)求y與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍).并求出x為何值時(shí),y的值最大?
(3)若在第一個(gè)月里,按使y獲得最大值的銷售單價(jià)進(jìn)行銷售后,在第二個(gè)月里受物價(jià)部門干預(yù),銷售單價(jià)不得高于90元,要想在全部收回投資的基礎(chǔ)上使第二個(gè)月的利潤達(dá)到1700元,那么第二個(gè)月里應(yīng)該確定銷售單價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AC=60 cm,A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4 cm/秒的速度向點(diǎn)A勻速運(yùn)動,同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2 cm/秒的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D,E運(yùn)動的時(shí)間是t(0<t≤15).過點(diǎn)DDFBC于點(diǎn)F,連接DE,EF。

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;

(3)當(dāng)t為何值時(shí),DEF為直角三角形?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案