如圖,已知∠MON=90°,A是∠MON內(nèi)部的一點(diǎn),過點(diǎn)A作AB⊥ON,垂足為點(diǎn)B,AB=3厘米,OB=4厘米,動點(diǎn)E,F(xiàn)同時(shí)從O點(diǎn)出發(fā),點(diǎn)E以1.5厘米/秒的速度沿ON方向運(yùn)動,點(diǎn)F以2厘米/秒的速度沿OM方向運(yùn)動,EF與OA交于點(diǎn)C,連接AE,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時(shí),點(diǎn)F隨之停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒(t>0).

(1)當(dāng)t=1秒時(shí),△EOF與△ABO是否相似?請說明理由;

(2)在運(yùn)動過程中,不論t取何值時(shí),總有EF⊥OA.為什么?

3)連接AF,在運(yùn)動過程中,是否存在某一時(shí)刻t,使得S△AEF=S四邊形ABOF?若存在,請求出此時(shí)t的值;若不存在,請說明理由.


解:(1)∵t=1,

∴OE=1.5厘米,OF=2厘米,

∵AB=3厘米,OB=4厘米,

==,==

∵∠MON=∠ABE=90°,

∴△EOF∽△ABO.

(2)在運(yùn)動過程中,OE=1.5t,OF=2t.

∵AB=3,OB=4.

又∵∠EOF=∠ABO=90°,

∴Rt△EOF∽Rt△ABO.

∴∠AOB=∠EOF.

∵∠AOB+∠FOC=90°,

∴∠EOF+∠FOC=90°,

∴EF⊥OA.

(3)如圖,連接AF,

∵OE=1.5t,OF=2t,

∴BE=4﹣1.5t

∴S△FOE=OE•OF=×1.5t×2t=t2,S△ABE=×(4﹣1.5t)×3=6﹣t,

S梯形ABOF=(2t+3)×4=4t+6

∵S△AEF=S四邊形ABOF

∴S△FOE+S△ABE=S梯形ABOF,

t2+6﹣t=(4t+6),即6t2﹣17t+12=0,

解得t=或t=

∴當(dāng)t=或t=時(shí),S△AEF=S四邊形ABOF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


用直尺和圓規(guī)作一個(gè)角等于已知角,如圖,能得出∠A′O′B′=∠AOB的依據(jù)是( 。

   A.(SAS)       B.(SSS)       C.(ASA)            D.(AAS)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,要利用一面墻(墻長為25米)建羊圈,用100米的圍欄圍成總面積為400平方米的三個(gè)大小相同的矩形羊圈,求羊圈的邊長AB,BC各為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計(jì)算:= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在矩形ABCD中,點(diǎn)E為AB的中點(diǎn),EF⊥EC交AD于點(diǎn)F,連接CF(AD>AE),下列結(jié)論:

①∠AEF=∠BCE;

②AF+BC>CF;

③S△CEF=S△EAF+S△CBE;

④若=,則△CEF≌△CDF.

其中正確的結(jié)論是  .(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


不等式組的解集是(    )

A.        B.       C.       D.     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計(jì)算的值是          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


不等式2x﹣4>0的解集為( 。

   A. x>        B. x>2            C. x>﹣2          D. x>8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


把標(biāo)準(zhǔn)紙一次又一次對開,可以得到均相似的“開紙”.現(xiàn)在我們在長為2、寬為1的矩形紙片中,畫兩個(gè)小矩形,使這兩個(gè)小矩形的每條邊都與原矩形紙的邊平行,或小矩形的邊在原矩形的邊上,且每個(gè)小矩形均與原矩形紙相似,然后將它們剪下,則所剪得的兩個(gè)小矩形紙片周長之和的最大值是          

查看答案和解析>>

同步練習(xí)冊答案