【題目】如圖:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=10,則DF等于

【答案】5
【解析】解:過D作DM⊥AC, ∵∠DAE=∠ADE=15°,
∴∠DEC=30°,AE=DE,
∵AE=10,
∴DE=10,
∴DM=5,
∵DE∥AB,
∴∠BAD=∠ADE=15°,
∴∠BAD=∠DAC,
∵DF⊥AB,DM⊥AC,
∴DF=DM=5.
所以答案是:5.

【考點(diǎn)精析】通過靈活運(yùn)用角平分線的性質(zhì)定理和含30度角的直角三角形,掌握定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱軸為x=2,點(diǎn)P0,t)是y軸上的一個(gè)動(dòng)點(diǎn).

1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).

2)如圖1,當(dāng)0≤t≤4時(shí),設(shè)PAD的面積為S,求出St之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時(shí)t的值.

3)如圖2,當(dāng)點(diǎn)P運(yùn)動(dòng)到使PDA=90°時(shí),RtADPRtAOC是否相似?若相似,求出點(diǎn)P的坐標(biāo);若不相似,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列長(zhǎng)度的三條線段中,不能組成三角形的是( )

A. 2cm,3cm4cmB. 3cm,6cm76cm

C. 2cm,2cm6cmD. 5cm,6cm,7cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若2a與1﹣a互為相反數(shù),則a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一張長(zhǎng)方形紙片ABCD沿EF折疊后ED與BC的交點(diǎn)為G,D、C分別在M、N的位置上,若∠EFG=55°,求:
(1)∠FED的度數(shù);
(2)∠FEG的度數(shù);
(3)∠1和∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為進(jìn)行危房改造,政府最近將在某校搭建板房,從某廠調(diào)拔了用于搭建板房的板材5600m3和鋁材2210m3 , 計(jì)劃用這些材料在某校搭建甲、乙兩種規(guī)格的板房共100間.若搭建一間甲型 板房或一間乙型板房所需板材和鋁材的數(shù)量如表所示:

板房規(guī)格

板材數(shù)量(m3

鋁材數(shù)量(m3

甲型

40

30

乙型

60

20

請(qǐng)你根據(jù)以上信息,設(shè)計(jì)出甲、乙兩種板房的搭建方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=(k﹣3)x2+2x+1的圖象與x軸有交點(diǎn),則k的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一根24cm的筷子置于底面直徑為15cm,高為8cm的圓柱形水杯中,設(shè)筷子露在杯子外面的長(zhǎng)度為hcm,則h的取值范圍是(
A.h≤17
B.h≥8
C.15≤h≤16
D.7≤h≤16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BC,AE⊥AD交BD于點(diǎn)E,CF⊥BC交BD于點(diǎn)F,且AE=CF.求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案