在平面幾何中,我們可以證明:周長(zhǎng)一定的多邊形中,正多邊形面積最大.使用上面的事實(shí),解答下面的問題:現(xiàn)在有長(zhǎng)度分別為2,3,4,5,6(單位:cm)的五根木棒圍成一個(gè)三角形(允許連接,但不允許折斷),那么在能夠圍成的三角形中,最大面積的為
 
cm2
分析:首先確定當(dāng)三角形的三邊分別是7,7,6時(shí),三角形的面積最大.再根據(jù)面積公式求出高從而求出面積.
解答:解:當(dāng)三角形的三邊分別是7,7,6時(shí),三角形的面積最大,
則這個(gè)三角形是等腰三角形,過頂點(diǎn)作底邊上的高線,
根據(jù)勾股定理得到,高是2
10

因而面積是6
10
點(diǎn)評(píng):正確理解題意能得到什么情況下三角形的面積最大,是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

附加題:(如果你的全卷得分不足150分,則本題的得分將計(jì)入總分,但計(jì)入總分后全卷不得超過150分)
(1)解方程x(x-1)=2.
有學(xué)生給出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),
x=1
x-1=2
x=2
x-1=1
x=-1
x-1=-2
x=-2
x-1=-1

解上面第一、四方程組,無解;解第二、三方程組,得x=2或x=-1.
∴x=2或x=-1.
請(qǐng)問:這個(gè)解法對(duì)嗎?試說明你的理由.
(2)在平面幾何中,我們可以證明:周長(zhǎng)一定的多邊形中,正多邊形面積最大.
使用上邊的事實(shí),解答下面的問題:
用長(zhǎng)度分別為2,3,4,5,6(單位:cm)的五根木棒圍成一個(gè)三角形(允許連接,但不允許折斷),求能夠圍成的三角形的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•臨夏州)在平面幾何中,我們可以證明:周長(zhǎng)一定的多邊形中,正多邊形面積最大.使用上邊的事實(shí),解答下面的問題:
用長(zhǎng)度分別為2、3、4、5、6(單位:cm)的五根木棒圍成一個(gè)三角形(允許連接,但不允許折斷),求能夠圍成的三角形的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面幾何中,我們可以證明:周長(zhǎng)一定的多邊形中,正多邊形面積最大.使用上邊的事實(shí),解答下面的問題:
用長(zhǎng)度分別為2、3、4、5、6(單位:cm)的五根木棒圍成一個(gè)三角形(允許連接,但不允許折斷),求能夠圍成的三角形的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第28章《一元二次方程》中考題集(15):28.2 解一元二次方程(解析版) 題型:解答題

附加題:(如果你的全卷得分不足150分,則本題的得分將計(jì)入總分,但計(jì)入總分后全卷不得超過150分)
(1)解方程x(x-1)=2.
有學(xué)生給出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),

解上面第一、四方程組,無解;解第二、三方程組,得x=2或x=-1.
∴x=2或x=-1.
請(qǐng)問:這個(gè)解法對(duì)嗎?試說明你的理由.
(2)在平面幾何中,我們可以證明:周長(zhǎng)一定的多邊形中,正多邊形面積最大.
使用上邊的事實(shí),解答下面的問題:
用長(zhǎng)度分別為2,3,4,5,6(單位:cm)的五根木棒圍成一個(gè)三角形(允許連接,但不允許折斷),求能夠圍成的三角形的最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案