【題目】閱讀下列一段文字,然后回答下列問題:
已知平面內(nèi)兩點P1(x1,y1),P2(x2,y2),其兩點間的距離。例如:已知P(3,1),Q(1,-2),則這兩點間的距離.特別地,如果兩點M(x1,y1),N(x2,y2),所在的直線與坐標軸重合或平行于坐標軸或者垂直于坐標軸,那么這兩點間的距離公式可簡化為或。
(1)已知A(2,3),B(-1,-2),則A,B兩點間的距離為_________;
(2)已知M,N在平行于y軸的直線上,點M的縱坐標為-2,點N的縱坐標為3,則M,N兩點間的距離為_________;
(3)在平面直角坐標系中,已知A(0,4),B(4,2),在x軸上找點P,使PA+PB的長度最短,求出點P的坐標及PA+PB的最短長度.
【答案】(1);(2)5;(3) PA+PB的長度最短時,點P的坐標為(,0),PA+PB的最短長度為.
【解析】
(1)直接利用兩點之間距離公式直接求出即可;
(2)根據(jù)題意列式計算即可;
(3)利用軸對稱求最短路線方法得出P點位置,進而求出PA+PB的最小值.
(1) (1)∵A(2,3),B(-1,-2),
∴A,B兩點間的距離為: ;
(2) ∵M,N在平行于y軸的直線上,點M的縱坐標為-2,點N的縱坐標為3,
則M,N兩點間的距離為3-(-2)=5;
(3)如圖,作點A關(guān)于x軸的對稱點A′,連接A′B與x軸交于點P,此時PA+PB最短
設(shè)A′B的解析式為y=kx+b
將A′(0,-4),B(4,2)代入y=kx+b得
解得
∴直線設(shè)A′B的解析式為
令y=0得
∴P(0,).
∵PA′=PA
∴PA+PB=PA′+PB=A′B=
∴PA+PB的長度最短時,點P的坐標為(,0),PA+PB的最短長度為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【題目】如圖,某數(shù)學(xué)興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計算這棵樹CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在讀書月活動中,學(xué)校準備購買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個類別進行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根
據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 名同學(xué);
(2)條形統(tǒng)計圖中,m= ,n= ;
(3)扇形統(tǒng)計圖中,藝術(shù)類讀物所在扇形的圓心角是 度;
(4)學(xué)校計劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計學(xué)校購買其他類讀物多少冊比較合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD的兩條邊在坐標軸上,點D與坐標原點O重合,且AD=8,AB=6.如圖2,矩形ABCD沿OB方向以每秒1個單位長度的速度運動,同時點P從A點出發(fā)也以每秒1個單位長度的速度沿矩形ABCD的邊AB經(jīng)過點B向點C運動,當(dāng)點P到達點C時,矩形ABCD和點P同時停止運動,設(shè)點P的運動時間為t秒.
(1)當(dāng)t=5時,請直接寫出點D、點P的坐標;
(2)當(dāng)點P在線段AB或線段BC上運動時,求出△PBD的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出相應(yīng)t的取值范圍;
(3)點P在線段AB或線段BC上運動時,作PE⊥x軸,垂足為點E,當(dāng)△PEO與△BCD相似時,求出相應(yīng)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶種植一種經(jīng)濟作物,總用水量y(米3)與種植時間x(天)之間的函數(shù)關(guān)系式如圖所示.
(1)第20天的總用水量為多少米3?
(2)當(dāng)x≥20時,求y與x之間的函數(shù)關(guān)系式;
(3)種植時間為多少天時,總用水量達到7000米3?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標系中,直線y=x-3與坐標軸交于A,B兩點.
(1)求A,B兩點的坐標;
(2)以AB為邊在第四象限內(nèi)作等邊三角形ABC,求△ABC的面積;
(3)在平面內(nèi)是否存在點M,使得以M,O,A,B為頂點的四邊形是平行四邊形,若存在,直接寫出M點的坐標:若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知與填空:如圖①,直線,求證:.
閱讀下面的解答過程,并填上適當(dāng)?shù)睦碛桑?/span>
解:過點作直線,
( )
(已知),,
( )
( )
,
( )
應(yīng)用與拓展:如圖②,直線,若.
則 度
方法與實踐:如圖③,直線,若,則 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=,cos37°=,tan37°=)
求把手端點A到BD的距離;
求CH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,已知∠AOC=75°,∠BOE :∠DOE=2:3.
(1)求∠BOE的度數(shù);
(2)若OF平分∠AOE,∠AOC與∠AOF相等嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com