【題目】一個邊長為4的等邊三角形ABC的高與⊙O的直徑相等,如圖放置,⊙OBC相切于點C,⊙OAC相交于點E,則CE的長是:

A. B. C. 2 D. 3

【答案】D

【解析】

試題連接OC,并過點OOF⊥CEF,根據(jù)等邊三角形的性質(zhì),等邊三角形的高等于底邊高的倍.題目中一個邊長為4cm的等邊三角形ABC⊙O等高,說明⊙O的半徑為,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得出FC的長,利用垂徑定理即可得出CE的長.

連接OC,并過點OOF⊥CEF,

∵△ABC為等邊三角形,邊長為4,

高為2,即OC=

∵∠ACB=60°,故有∠OCF=30°

Rt△OFC中,可得FC=,

∴CE=3

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,直線ykx+2與坐標軸交于AB兩點,OA=4,點Cx軸正半軸上的點,且OCOB,過點CAB的垂線,交y軸于點D,拋物線yax2+bx+cAB、C三點.

(1)求拋物線函數(shù)關(guān)系式;

(2)如圖②,點P是射線BA上一動點(不與點B重合),連接OP,過點OOP的垂線交直線CD于點Q.求證:OPOQ;

(3)如圖③,在(2)的條件下,分別過P、Q兩點作x軸的垂線,分別交x軸于點E、F,交拋物線于點MN,是否存在點P的位置,使以P、Q、M、N為頂點的四邊形為平行四邊形?如果存在,求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a、b、cRtABCRtBED邊長,易知AE=c,這時我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.

請解決下列問題

寫出一個“勾系一元二次方程”;

求證關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實數(shù)根;

x=1是“勾系一元二次方程”ax+cx+b=0的一個根且四邊形ACDE的周長是,ABC面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小晗家客廳裝有一種三位單極開關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關(guān)均可打開對應的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.

(1)若小晗任意按下一個開關(guān),正好樓梯燈亮的概率是多少?

(2)若任意按下一個開關(guān)后,再按下另兩個開關(guān)中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖或列表法加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC于點F,連接DF,分析下列五個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF,其中正確的結(jié)論有________個。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,銳角∠DAB的平分線AC⊙O于點C,作CD⊥AD,垂足為D,直線CDAB的延長線交于點E

1)求證:直線CD⊙O的切線;

2)當AB2BE,且CE=時,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線C1:y=﹣x2+4x﹣3,把拋物線C1先向右平移3個單位長度,再向上平移3個單位長度,得到拋物線C2, 將拋物線C1和拋物線C2這兩個圖象在x軸及其上方的部分記作圖象M.若直線y=kx+ (k≥0)與圖象M至少有2個不同的交點,則k的取值范圍是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于點AB,與軸交于點C。過點CCDx軸,交拋物線的對稱軸于點D,連結(jié)BD。已知點A坐標為(-10)。

1)求該拋物線的解析式;

2)求梯形COBD的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AD是ABC的角平分線,O經(jīng)過A、B、D三點,過點B作BEAD,交O于點E,連接ED.

(1)求證:EDAC;

(2)連接AE,試證明:ABCD=AEAC.

查看答案和解析>>

同步練習冊答案