A. | $\frac{6}{5}$$\sqrt{10}$ | B. | 6 | C. | $\frac{8}{5}$$\sqrt{10}$ | D. | $\frac{24}{5}$ |
分析 首先根據(jù)折疊可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,進(jìn)而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE,得出BF,由勾股定理即可求得B′E的長(zhǎng).
解答 解:根據(jù)折疊的性質(zhì)可知:DE=AE,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,B′F=BF,
∴B′D=4-3=1,∠DCE+∠B′CF=∠ACE+∠BCF,
∵∠ACB=90°,
∴∠ECF=45°,
∴△ECF是等腰直角三角形,
∴EF=CE,∠EFC=45°,
∴∠BFC=∠B′FC=135°,
∴∠B′FE=90°,
∵S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}$AB•CE,
∴AC•BC=AB•CE,
∵根據(jù)勾股定理得:AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{6}^{2}+{8}^{2}}$=10,
∴CE=$\frac{AC•BC}{AB}$=4.8,
∴EF=4.8,AE=$\sqrt{A{C}^{2}-C{E}^{2}}$=3.6,
∴B′F=BF=AB-AE-EF=10-3.6-4.8=1.6,
∴B′E=$\sqrt{E{F}^{2}+B′{F}^{2}}$=$\sqrt{4.{8}^{2}+1.{6}^{2}}$=$\frac{8\sqrt{10}}{5}$.
故選:C.
點(diǎn)評(píng) 此題主要考查了翻折變換,等腰三角形的判定和性質(zhì),勾股定理等知識(shí);熟練掌握翻折變換的性質(zhì),由直角三角形的性質(zhì)和勾股定理求出CE、AE是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a+b<0 | B. | a-b<0 | C. | |a|>|b| | D. | $\frac{a}>0$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 由2x-3=7,得2x=7-3 | B. | 由3x-2=x+1,得3x-x=1-2 | ||
C. | 由-2x=5,得x=-3 | D. | 由-$\frac{1}{3}$x=1,得x=-3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com