【題目】在數(shù)學興趣小組活動中,小明進行數(shù)學探究活動,將邊長為的正方形ABCD與邊長為2的正方形AEFG按圖1位置放置,AD與AE在同一直線l上,AB與AG在同一直線上.

(1)圖1中,小明發(fā)現(xiàn)DG=BE,請你幫他說明理由.

(2)小明將正方形ABCD按如圖2那樣繞點A旋轉(zhuǎn)一周,旋轉(zhuǎn)到當點C恰好落在直線l上時,請你直接寫出此時BE的長.

【答案】(1)見解析;(2)BE的長為

【解析】分析:(1)根據(jù)正方形的性質(zhì)得出AD=AB,AG=AE,再利用SAS證明△DAG≌△BAE, 根據(jù)全等三角形對應(yīng)邊相等即可得出DG=BE;
(2)分兩種情況:①CEA的延長線上時,連結(jié)BDACO,求出OBOE,然后在RtBOE中,利用勾股定理可求出BE的長;②CAE上時,證明CE重合,那么

詳解:(1)如圖1,∵四邊形ABCD與四邊形AEFG都是正方形,

AD=AB,AG=AE,

在△DAG與△BAE中,

∴△DAG≌△BAE

DG=BE;

(2)將正方形ABCD按如圖2那樣繞點A旋轉(zhuǎn)一周,旋轉(zhuǎn)到當點C恰好落在直線l上時,分兩種情況:

①如果CEA的延長線上時,

如備用圖1,連結(jié)BDACO,

∵正方形ABCD邊長為

OB=OA=12BD=1.

∵正方形AEFG邊長為2,

OE=OA+AE=1+2=3.

RtBOE,

②如果CAE上時,

如備用圖2,連結(jié)BDACO,

∵正方形ABCD邊長為,

∵正方形AEFG邊長為2,

AE=2,

CE重合,

故所求BE的長為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】“QQ空間等級是用戶資料和身份的象征,按照空間積分劃分不同的等級.當用戶在10級以上,每個等級與對應(yīng)的積分有一定的關(guān)系.現(xiàn)在知道第10級的積分是90,11級的積分是160,12級的積分是250,13級的積分是360,14級的積分是490…若某用戶的空間積分達到1000,則他的等級是( )

A.15B.16C.17D.18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學某學期的四次數(shù)學測試成績(單位:分)如下表:

第一次

第二次

第三次

第四次

87

95

85

93

80

80

90

90

據(jù)上表計算,甲、乙兩名同學四次數(shù)學測試成績的方差分別為S2=17、S2=25,下列說法正確的是( 。

A. 甲同學四次數(shù)學測試成績的平均數(shù)是89分

B. 甲同學四次數(shù)學測試成績的中位數(shù)是90分

C. 乙同學四次數(shù)學測試成績的眾數(shù)是80分

D. 乙同學四次數(shù)學測試成績較穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形ABCD的邊BCx軸的正半軸上,點B在點C的左側(cè),直線y=kx經(jīng)過點A2,2)和點P,且OP=4,將直線y=kx沿y軸向下平移得到直線y=kx+b,若點P落在矩形ABCD的內(nèi)部,則b的取值范圍是(

A. 0b2 B. 2b0 C. 4b2 D. 4b<-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABC的兩辺OA、0C分別在x軸、y軸上,點D(53)在邊AB上,以Cカ中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應(yīng)點D′的坐標是(

A. (110)B. (-2,0)C. (210)(-2,0)D. (10,2)(-2,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在橫線上直接寫出下列算式的運算結(jié)果.

(1)(+3)+(-8)=__________________.

(2)0-(-6)=__________________.

(3)_____________________.

(4)__________________.

(5)_____________________.

(6)__________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某九年級制學校圍繞每天30分鐘的大課間,你最喜歡的體育活動項目是什么?(只寫一項)的問題,對在校學生進行隨機抽樣調(diào)查,從而得到一組數(shù)據(jù).圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:

(1)該校對多少學生進行了抽樣調(diào)查?

(2)本次抽樣調(diào)查中,最喜歡籃球活動的有多少?占被調(diào)查人數(shù)的百分比是多少?

(3)若該校九年級共有200名學生,圖2是根據(jù)各年級學生人數(shù)占全校學生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計圖,請你估計全校學生中最喜歡跳繩活動的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在菱形ABCD中,∠ABC=60°,點P是射線BD上一動點,以AP為邊向右側(cè)作等邊APE,點E的位置隨著點P的位置變化而變化.

(1)探索發(fā)現(xiàn)

如圖1,當點E在菱形ABCD內(nèi)部時,連接CE,BPCE的數(shù)量關(guān)系是_______,CEAD的位置關(guān)系是_______.

(2)歸納證明

證明2,當點E在菱形ABCD外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由.

(3)拓展應(yīng)用

如圖3,當點P在線段BD的延長線上時,連接BE,若AB=5BE=13,請直接寫出線段DP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣kx﹣2=0.

(1)求證:方程總有兩個不相等的實數(shù)根;

(2)已知方程的一個根為x=+1,求k的值及另一個根.

查看答案和解析>>

同步練習冊答案