【題目】是一張等腰直角三角形紙板,,,在這張紙板中剪出一個盡可能大的正方形稱為第次剪;在余下的中,分別剪取正方形,得到兩個相同的正方形,稱為第次剪取(如圖);繼續(xù)操作下去;第次剪取后,余下的所有小三角形的面積之和是________

【答案】

【解析】

根據(jù)題意,可求得SAED+SDBF=S正方形ECFD=S1=4,同理可得規(guī)律:Sn即是第n次剪取后剩余三角形面積和,根據(jù)此規(guī)律求解即可答案.

∵四邊形ECFD是正方形,

DE=EC=CF=DF,AED=DFB=90°,

∵△ABC是等腰直角三角形,

∴∠A=B=45°,

AE=DE=EC=DF=BF=EC=CF,

AC=BC=4,

DE=DF=2,

SAED+SDBF=S正方形ECFD=S1=4,

同理:S2即是第二次剪取后剩余三角形面積和,Sn即是第n次剪取后剩余三角形面積和,

∴第一次剪取后剩余三角形面積和為:8-S1=4=22=S1

第二次剪取后剩余三角形面積和為:S1-S2=4-2=21=S2,

第三次剪取后剩余三角形面積和為:S2-S3=20=S3

n次剪取后剩余三角形面積和為:Sn-1-Sn=Sn=,

故第64次剪取后,余下的所有小三角形的面積之和是:

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰中,DBC的中點,過點C于點G,過點B于點B,交CG的延長線于點F,連接DFAB于點E.

(1)求證:;

(2)求證:AB垂直平分DF;

(3)連接AF,試判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰中,的平分線交于點,過點,分別交于點、,若的周長為18,則的長是( )

A.8B.9C.10D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某倉儲中心有一斜坡AB,其坡比為i=12,頂部A處的高AC4 m,B,C在同一水平面上.

(1)求斜坡AB的水平寬度BC;

(2)矩形DEFG為長方形貨柜的側面圖,其中DE=2.5 m,EF=2 m.將貨柜沿斜坡向上運送,當BF=3.5 m時,求點D離地面的高.(≈2.236,結果精確到0.1 m)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小華剪了兩條寬均為的紙條,交叉疊放在一起,且它們的交角為,則它們重疊部分的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC是等腰直角三角形,BAC= 90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BDCF成立.

1ABC繞點A逆時針旋轉θ(0°θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.

2ABC繞點A逆時針旋轉45°時,如圖3,延長DB交CF于點H.

求證:BDCF;

當AB=2,AD=3時,求線段DH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在ABC 中,AB、AC 邊的垂直平分線相交于點 O,分別交 BC 邊于點 M、N,連接 AM,AN

1)若AMN 的周長為 6,求 BC 的長;

2)若∠MON=30°,求∠MAN 的度數(shù);

3)若∠MON=45°,BM=3BC=12,求 MN 的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是邊長為1的正方形ABCD的對角線,BE平分∠DBCDC于點E,延長BC到點F,使CF=CE,連接DF,交BE的延長線于點G.

(1)求證:△BCE≌△DCF;

(2)求CF的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,以BC為直徑的⊙OAD相切,點EAD的中點,下列結論正確的個數(shù)是( 。

(1)AB+CD=AD;(2)SBCE=SABE+SDCE;(3)ABCD=;(4)∠ABE=∠DCE.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案