【題目】概念學(xué)習(xí)
規(guī)定:如果一個(gè)三角形的三個(gè)角分別等于另一個(gè)三角形的三個(gè)角,那么稱這兩個(gè)三角形互為“等角三角形”.
從三角形不是等腰三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原來三角形是“等角三角形”,我們把這條線段叫做這個(gè)三角形的“等角分割線”.
理解概念
如圖1,在中,,,請(qǐng)寫出圖中兩對(duì)“等角三角形”概念應(yīng)用
如圖2,在中,CD為角平分線,,.
求證:CD為的等角分割線.
在中,,CD是的等角分割線,直接寫出的度數(shù).
【答案】(1)△ABC與△ACD,△ABC與△BCD,△ACD與△BCD是“等角三角形”;(2)見解析;(3)∠ACB的度數(shù)為111°或84°或106°或92°
【解析】
(1)根據(jù)“等角三角形”的定義解答;
(2)根據(jù)三角形內(nèi)角和定理求出∠ACB,根據(jù)角平分線的定義得到∠ACD=∠DCB=
∠ACB=40°,根據(jù)“等角三角形”的定義證明;
(3)分△ACD是等腰三角形,DA=DC、DA=AC和△BCD是等腰三角形,DB=BC、DC=BD四種情況,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計(jì)算.
(1)△ABC與△ACD,△ABC與△BCD,△ACD與△BCD是“等角三角形”;
(2)∵在△ABC中,∠A=40°,∠B=60°
∴∠ACB=180°-∠A-∠B=80°
∵CD為角平分線,
∴∠ACD=∠DCB= 40°,
∴∠ACD=∠A,∠DCB=∠A,
∴CD=DA,
∵在△DBC中,∠DCB=40°,∠B=60°,
∴∠BDC=180°-∠DCB-∠B=80°,
∴∠BDC=∠ACB,
∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,
∠B=∠B,
∴CD為△ABC的等角分割線;
(3)∠ACB的度數(shù)為111°或84°或106°或92°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校改造一個(gè)邊長(zhǎng)為米的正方形花壇,經(jīng)規(guī)劃后,南北向要縮短米,東西向要加長(zhǎng)米,則改造后花壇的面積是________平方米,改造后花壇的面積減少了________平方米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】LED燈具有環(huán)保節(jié)能、投射范圍大、無頻閃、使用壽命較長(zhǎng)等特點(diǎn),在日常生活中,人們更傾向于LED燈的使用,某校數(shù)學(xué)興趣小組為了解LED燈泡與普通白熾燈泡的銷售情況,進(jìn)行了市場(chǎng)調(diào)查:某商場(chǎng)購(gòu)進(jìn)一批30瓦的LED燈泡和普通白熾燈泡進(jìn)行銷售,其進(jìn)價(jià)與標(biāo)價(jià)如下表:
LED燈泡 | 普通白熾燈泡 | |
進(jìn)價(jià)(元) | 45 | 25 |
標(biāo)價(jià)(元) | 60 | 30 |
(1)該商場(chǎng)購(gòu)進(jìn)了LED燈泡與普通白熾燈泡共300個(gè),LED燈泡按標(biāo)價(jià)進(jìn)行銷售,而普通白熾燈泡打九折銷售,當(dāng)銷售完這批燈泡后可以獲利3200元,求該商場(chǎng)購(gòu)進(jìn)LED燈泡與普通白熾燈泡的數(shù)量分別為多少個(gè)?
(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場(chǎng)計(jì)劃再次購(gòu)進(jìn)兩種燈泡120個(gè),在不打折的情況下,請(qǐng)問如何進(jìn)貨,銷售完這批燈泡時(shí)獲利最多且不超過進(jìn)貨價(jià)的30%,并求出此時(shí)這批燈泡的總利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸上,∠B=120°,OA=2,將菱形OABC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)105°至OA′B′C′的位置,則點(diǎn)B′的坐標(biāo)為( )
A.( ,﹣ )
B.(﹣ , )
C.(2,﹣2)
D.( ,﹣ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知α是銳角,且點(diǎn)A( ,a),B(sin30°+cos30°,b),C(﹣m2+2m﹣2,c)都在二次函數(shù)y=﹣x2+x+3的圖象上,那么a、b、c的大小關(guān)系是( )
A.a<b<c
B.a<c<b
C.b<c<a
D.c<b<a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板按如圖放置,則下列結(jié)論:
①如果∠2=30°,則有AC∥DE;
②∠BAE+∠CAD =180°;
③如果BC∥AD,則有∠2=45°;
④如果∠CAD=150°,必有∠4=∠C;
正確的有( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具零售店準(zhǔn)備從批發(fā)市場(chǎng)選購(gòu)A、B兩種文具,批發(fā)價(jià)A種為12元/件,B種為8元/件.若該店零售A、B兩種文具的日銷售量y(件)與零售價(jià)x(元/件)均成一次函數(shù)關(guān)系.(如圖)
(1)求y與x的函數(shù)關(guān)系式;
(2)該店計(jì)劃這次選購(gòu)A、B兩種文具的數(shù)量共100件,所花資金不超過1000元,并希望全部售完獲利不低于296元,若按A種文具每件可獲利4元和B種文具每件可獲利2元計(jì)算,則該店這次有哪幾種進(jìn)貨方案?
(3)若A種文具的零售價(jià)比B種文具的零售價(jià)高2元/件,求兩種文具每天的銷售利潤(rùn)W(元)與A種文具零售價(jià)x(元/件)之間的函數(shù)關(guān)系式,并說明A、B兩種文具零售價(jià)分別為多少時(shí),每天銷售的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法,正確的是( )
A. 若ac=bc,則a=b
B. 30.15°=30°15′
C. 一個(gè)圓被三條半徑分成面積比2:3:4的三個(gè)扇形,則最小扇形的圓心角為90°
D. 鐘表上的時(shí)間是9點(diǎn)40分,此時(shí)時(shí)針與分針?biāo)傻膴A角是50°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com