【題目】在平面直角坐標系中,拋物線軸于兩點,交軸于點.

(1)如圖,求拋物線的解析式;

(2)如圖,點是第一象限拋物線上的一個動點,連接軸于點,過點軸交拋物線于點,交軸于點,連接、、,設點的橫坐標為,四邊形的面積為,求之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

(3)如圖,在(2) 的條件下,點中點,過點的垂線與過點平行于軸的直線交于點, ,點為第一象限內(nèi)直線 下方拋物線上一點,連接軸于點,點上一點,連接、,若,,求點坐標

【答案】1;(2;(3

【解析】

1)把A,B點代入解析式即可

2)過點軸,交軸于點,點,可得,即可解答

3)過點于點,,,求出點,再根據(jù)對稱軸,由對稱性得,然后設點過點,得到NG,MP,KM的值,過點于點,得到,過點于點,,求出m即可解答

1)解拋物線過點,

解得

拋物線解析式為

2)過點軸,交軸于點,點

,

3)過點于點,,

中點

(舍),.

,

對稱軸,由對稱性得.

,,設點過點.

,

過點于點

過點于點,

解得(舍),

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為積極響應南孔圣地,衢州有禮城市品牌建設,在每周五下午第三節(jié)課開展了豐富多彩的走班選課活動.其中綜合實踐類共開設了禮行”“禮知”“禮思”“禮藝”“禮源等五門課程,要求全校學生必須參與其中一門課程.為了解學生參與綜合實踐類課程活動情況,隨機抽取了部分學生進行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

1)請問被隨機抽取的學生共有多少名?并補全條形統(tǒng)計圖.

2)在扇形統(tǒng)計圖中,求選擇禮行課程的學生人數(shù)所對應的扇形圓心角的度數(shù).

3)若該校共有學生1200人,估計其中參與禮源課程的學生共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(8分)某調(diào)查小組采用簡單隨機抽樣方法,對某市部分中小學生一天中陽光體育運動時間進行了抽樣調(diào)查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計圖:

(1)該調(diào)查小組抽取的樣本容量是多少?

(2)求樣本學生中陽光體育運動時間為1.5小時的人數(shù),并補全占頻數(shù)分布直方圖;

(3)請估計該市中小學生一天中陽光體育運動的平均時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)

根據(jù)所給信息,解答以下問題:

(1)在扇形統(tǒng)計圖中,C對應的扇形的圓心角是   度;

(2)補全條形統(tǒng)計圖;

(3)所抽取學生的足球運球測試成績的中位數(shù)會落在   等級;

(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD,FAD,射線BFAC于點G,CD的延長線于點E,則下列等式正確的為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明想測量河對岸的一幢高樓AB的高度,小明在河邊C處測得樓頂A的仰角是60°距C處60米的E處有幢樓房,小明從該樓房中距地面20米的D處測得樓頂A的仰角是30°(點B.C.E在同一直線上且AB、DE均與地面BE處置),求樓AB的高________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,再分別以點M,N為圓心畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是(  )

AD是BAC的平分線     

②∠ADC=60°

③△ABD是等腰三角形  

點D到直線AB的距離等于CD的長度.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,橫坐標為2的點A在反比例函數(shù)y(k0)的圖象上,過點AABx軸于點B,

(1)k的值;

(2)x軸的負半軸上找點P,將點A繞點P順時針旋轉(zhuǎn)90°,其對應點A落在此反比例函數(shù)第三象限的圖象上,求點P的坐標;

(3)直線yx+n(n0)AB的延長線交于點C,與反比例函數(shù)圖象交于點E,若點E到直線AB的距離等于AC,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩個等腰RtADE、RtABC如圖放置在一起,其中∠DAE=∠ABC90°.點EAB上,ACDE交于點H,連接BH、CE,且∠BCE15°,下列結(jié)論:①AC垂直平分DE;②△CDE為等邊三角形;③tanBCD;④;正確的個數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案